Math, asked by TejasMankatty, 5 months ago

One of the roots of equation y^ 2 -4y+k=0 is 2- sqrt 7 . Find the value of y.​

Answers

Answered by aadyasharma9
3

Answer:

k = 11 - 4 \sqrt{7 }

Step-by-step explanation:

hope it helps

pls mark brainliest

Attachments:
Answered by anandashish9525
0

Answer:

Geometry

Geometry Shapes Formulas for Class 9

Geometric Figure Area Perimeter

Rectangle A= l × w P = 2 × (l+w )

Triangle A = (1⁄2) × b × h P = a + b + c

Trapezoid A = (1⁄2) × h × (b1+ b2) P = a + b + c + d

Parallelogram A = b × h P = 2 (b + h)

Circle A = π r2 C = 2 π r

Algebra

Algebraic Identities For Class 9

\((a+b)^{2}=a^2+2ab+b^{2}\)

\((a-b)^{2}=a^{2}-2ab+b^{2}\)

\(\left (a + b \right ) \left (a – b \right ) = a^{2} – b^{2}\)

\(\left (x + a \right )\left (x + b \right ) = x^{2} + \left (a + b \right )x + ab\)

\(\left (x + a \right )\left (x – b \right ) = x^{2} + \left (a – b \right )x – ab\)

\(\left (x – a \right )\left (x + b \right ) = x^{2} + \left (b – a \right )x – ab\)

\(\left (x – a \right )\left (x – b \right ) = x^{2} – \left (a + b \right )x + ab\)

\(\left (a + b \right )^{3} = a^{3} + b^{3} + 3ab\left (a + b \right )\)

\(\left (a – b \right )^{3} = a^{3} – b^{3} – 3ab\left (a – b \right )\)

\( (x + y + z)^{2} = x^{2} + y^{2} + z^{2} + 2xy + 2yz + 2xz\)

\( (x + y – z)^{2} = x^{2} + y^{2} + z^{2} + 2xy – 2yz – 2xz\)

\( (x – y + z)^{2} = x^{2} + y^{2} + z^{2} – 2xy – 2yz + 2xz\)

\( (x – y – z)^{2} = x^{2} + y^{2} + z^{2} – 2xy + 2yz – 2xz\)

\( x^{3} + y^{3} + z^{3} – 3xyz = (x + y + z)(x^{2} + y^{2} + z^{2} – xy – yz -xz)\)

\( x^{2} + y^{2} = \frac{1}{2} \left [(x + y)^{2} + (x – y)^{2} \right ]\)

\( (x + a) (x + b) (x + c) = x^{3} + (a + b +c)x^{2} + (ab + bc + ca)x + abc\)

\( x^{3} + y^{3} = (x + y) (x^{2} – xy + y^{2})\)

\( x^{3} – y^{3} = (x – y) (x^{2} + xy + y^{2})\)

\( x^{2} + y^{2} + z^{2} -xy – yz – zx = \frac{1}{2} [(x-y)^{2} + (y-z)^{2} + (z-x)^{2}]\)<

Surface Area and Volumes

Shape Surface Area Volume

Cuboid 2(lb + bh +lh)

l= length, b=breadth, h=height

lbh

Cube 6a2 a3

Cylinder 2πr(h+r)

r = radius of circular bases

h = height of cylinder

πr2h

Cone πr(l+r)

r=radius of base

l=slant height

Also, l2=h2+r2, where h is the height of cone

(1/3)πr2h

Sphere 4πr2 (4/3)πr3

Heron’s Formula

\(Area ~of~ triangle~ using~ three~ sides =\sqrt{s(s-a)(s-b)(s-c)} \\)

Semi-perimeter, s = (a+b+c)/2

Similar questions