Math, asked by nkaveri2007, 6 months ago

one of the roots of the quadratic equation x^2 - 4x + 5 = 0 is

Answers

Answered by anmoldubey134
0

Answer:

x {}^{2}  - 4x + 5 = 0

x {}^{2}  + 1x - 5x + 5 = 0

x(x + 1) - 5(x + 1) = 0

(x - 5) \: (x + 1) = 0

x - 5 = 0 \:  \: or \:  \: x + 1 = 0

x = 5 \:  \: or \: x =  - 1

Answered by Anonymous
8

\huge\mathfrak{\bf{\underline{\underline{\purple{⍟Answer \ :}}}}}

 {x}^{2}  - 4x + 5 = 0 \\  a = 1 \\ b =  - 4 \\ c = 5 \\  {b}^{2}  - 4ac \\  =  {4}^{2}  - 4(1)(5) \\  = 16 - 20 \\  =  - 4 \\ by \: formula \:method \\  \frac{  - b +   \sqrt{ {b}^{2} - 4ac }  }{2a}  \:  \:  \: or \:  \frac{ - b -  \sqrt{ {b}^{2} - 4ac }  }{2a }  \\  = \frac{4 +  \sqrt{ - 4} }{2}  \:  \:  \: or \:  \: \:  \frac{4 -  \sqrt{ - 4} }{2}  \\  =  \frac{4 + 2i}{2}  \:  \:  \: or \:  \:  \:  \frac{4 - 2i}{2 }  \\  x = 2 + i  \:  \:  \:  \: or \:  \:  \:  \: x = 2 - i

Similar questions