Math, asked by zannatYasmin100, 4 days ago

one roof of the quadratic equation x square + px + 3 = 0 is 1 other root is.​

Answers

Answered by wadekars427
4

Step-by-step explanation:

\large\underline{\sf{Solution-}}

Solution−

Given parametric functions are

\begin{gathered}\rm \: x = \sqrt{ {a}^{ {cos}^{ - 1}t } } \: - - - (1) \\ \end{gathered}

x=

a

cos

−1

t

−−−(1)

and

\begin{gathered}\rm \: y = \sqrt{ {a}^{ {sin}^{ - 1}t } } \: - - - (2) \\ \end{gathered}

y=

a

sin

−1

t

−−−(2)

On multiply equation (1) and (2), we get

\begin{gathered}\rm \: xy = \sqrt{ {a}^{ {cos}^{ - 1}t } } \times \sqrt{ {a}^{ {sin}^{ - 1}t } } \\ \end{gathered}

xy=

a

cos

−1

t

×

a

sin

−1

t

We know,

\begin{gathered}\boxed{\sf{ \: {x}^{m} \times {y}^{m} \: = \: {(xy)}^{m} \: }} \\ \end{gathered}

x

m

×y

m

=(xy)

m

So, using this identity, we get

\begin{gathered}\rm \: xy = \sqrt{ {a}^{ {cos}^{ - 1}t } \times {a}^{ {sin}^{ - 1} t} } \\ \end{gathered}

xy=

a

cos

−1

t

×a

sin

−1

t

We know,

\begin{gathered}\boxed{\sf{ \: {x}^{m} \times {x}^{n} \: = \: {x}^{m + n} \: }} \\ \end{gathered}

x

m

×x

n

=x

m+n

So, using this identity, we get

\begin{gathered}\rm \: xy = \sqrt{ {a}^{ {cos}^{ - 1}t + {sin}^{ - 1} t}} \\ \end{gathered}

xy=

a

cos

−1

t+sin

−1

t

We know,

\begin{gathered}\boxed{\sf{ \: {cos}^{ - 1}x + {sin}^{ - 1}x = \frac{\pi}{2} \: }} \\ \end{gathered}

cos

−1

x+sin

−1

x=

2

π

So, using this identity, we get

\rm \: xy \: = \: \sqrt{ {\bigg(a\bigg) }^{\dfrac{\pi}{2}} }xy=

(a)

2

π

On dividing both sides w. r. t. x, we get

\begin{gathered}\rm \: \dfrac{d}{dx}(xy) \: = \: \dfrac{d}{dx}\sqrt{ {\bigg(a\bigg) }^{\dfrac{\pi}{2}} } \\ \end{gathered}

dx

d

(xy)=

dx

d

(a)

2

π

\begin{gathered}\rm \: x\dfrac{d}{dx}y + y\dfrac{d}{dx}x = 0 \\ \end{gathered}

x

dx

d

y+y

dx

d

x=0

\begin{gathered}\rm \: x\dfrac{dy}{dx} + y \times 1 = 0 \\ \end{gathered}

x

dx

dy

+y×1=0

\begin{gathered}\rm \: x\dfrac{dy}{dx} + y = 0 \\ \end{gathered}

x

dx

dy

+y=0

\begin{gathered}\rm \: x\dfrac{dy}{dx}= - y\\ \end{gathered}

x

dx

dy

=−y

\begin{gathered}\rm\implies \:\dfrac{dy}{dx} \: = \: - \: \dfrac{y}{x} \\ \end{gathered}

dx

dy

=−

x

y

Hence, Proved

▬▬▬▬▬▬▬▬▬▬▬▬▬▬▬▬▬▬▬▬▬▬▬▬

Additional Information

\begin{gathered}\begin{gathered}\boxed{\begin{array}{c|c} \bf f(x) & \bf \dfrac{d}{dx}f(x) \\ \\ \frac{\qquad \qquad}{} & \frac{\qquad \qquad}{} \\ \sf k & \sf 0 \\ \\ \sf sinx & \sf cosx \\ \\ \sf cosx & \sf - \: sinx \\ \\ \sf tanx & \sf {sec}^{2}x \\ \\ \sf cotx & \sf - {cosec}^{2}x \\ \\ \sf secx & \sf secx \: tanx\\ \\ \sf cosecx & \sf - \: cosecx \: cotx\\ \\ \sf \sqrt{x} & \sf \dfrac{1}{2 \sqrt{x} } \\ \\ \sf logx & \sf \dfrac{1}{x}\\ \\ \sf {e}^{x} & \sf {e}^{x} \end{array}} \\ \end{gathered}\end{gathered}

f(x)

k

sinx

cosx

tanx

cotx

secx

cosecx

x

logx

e

x

dx

d

f(x)

0

cosx

−sinx

sec

2

x

−cosec

2

x

secxtanx

−cosecxcotx

2

x

1

x

1

e

x

Answered by jadhavjitender22
2

Answer:

P + X + 3 = 0 1 2 3 0 1 1 3 + 3 y + 2 = 0 1 root is multiple + 4 = 0 1 roots multiple 5 = 0 root 1 multiple + 3 = 0 and multiple 1

Similar questions