Math, asked by naveentiwana06, 6 months ago

One side of parallelogram is 3/4 times
of its adjecent side if the perimeter of
parallelogram.
Parallelogram is 70cm find the sides of parallelogram​

Answers

Answered by EliteZeal
14

\huge{\blue{\bold{\underline{\underline{Answer :}}}}}

 \:\:

\large\underline{\green{\bf Given :-}}

 \:\:

  • One side of parallelogram is 3/4 times of its adjacent side

 \:\:

  • Perimeter of parallelogram is 70cm

 \:\:

\large\underline{\red{\bf To \: Find :-}}

 \:\:

  • Sides of parallelogram

 \:\:

\large\underline{\orange{\bf Solution :-}}

 \:\:

  • Let one side of parallelogram be "l"

  • Let the adjacent side be "b"

 \:\:

 \purple{\underline \bold{According \: to \: the \ question :}}

 \:\:

One side of parallelogram is 3/4 times of its adjacent side

 \:\:

 \sf b = \dfrac { 3 } { 4 } × l ⚊⚊⚊⚊ ⓵

 \:\:

 \underline{\bold{\texttt{Perimeter of parallelogram :}}}

 \:\:

➠ 2(Length + Breadth) ⚊⚊⚊⚊ ⓶

 \:\:

 \underline{\bold{\texttt{Perimeter of given parallelogram :}}}

 \:\:

  • Length = l

  • Breadth = b

  • Perimeter = 70

 \:\:

Putting these values in ⓶

 \:\:

➜ 2(l + b) = 70

 \:\:

 \sf l + b = \dfrac { 70 } { 2 }

 \:\:

➜ l + b = 35 ⚊⚊⚊⚊ ⓷

 \:\:

Putting  \sf b = \dfrac { 3 } { 4 } × l from ⓵ to ⓷

 \:\:

➜ l + b = 35

 \:\:

 \sf l + \dfrac { 3 } { 4 } × l = 35

 \:\:

 \sf \dfrac { 4l + 3l } { 4 } = 35

 \:\:

 \sf \dfrac { \cancel 7l } { 4 } = \cancel { 35}

 \:\:

 \sf \dfrac { l } { 4 } = \cancel { 5}

 \:\:

➨ l = 20 ⚊⚊⚊⚊ ⓸

 \:\:

  • Hence one side of parallelogram is 20 cm

 \:\:

Putting l = 20 from ⓸ to ⓷

 \:\:

➜ l + b = 35

 \:\:

➜ 20 + b = 35

 \:\:

➜ b = 35 - 20

 \:\:

➨ b = 15

 \:\:

  • Hence the adjacent side is of length 15 cm

 \:\:

We know that opposite sides of parallelogram are equal hence the other two sides are 20 cm and 15 cm too

 \:\:

∴ The sides of parallelogram are 20 cm , 15 cm , 20 cm , 15 cm

 \:\:

━━━━━━━━━━━━━━━━━━━━━━━━━

Additional information

 \:\:

Area of parallelogram

 \:\:

  • A = b × h

 \:\:

Where,

 \:\:

➻ A = Area

➻ b = Base

➻ h = Height

 \:\:

Properties of parallelogram

 \:\:

  • Opposite sides are congruent

  • Opposite angels are congruent

  • Consecutive angles are supplementary

  • If one angle is right, then all angles are right.

  • The diagonals of a parallelogram bisect each other.

  • Each diagonal of a parallelogram separates it into two congruent triangles

 \:\:

═════════════════════════

Similar questions