one side of rhombus 41m,area 720m^2 then sum of diagonal of that rhombus
Answers
Area of rhombus = ab =
where, a and b sides of rhombus and and
are diagonals.
if, a = 41 m is a side
We, know diagonal of rhombus intersect at right angle.
hence, (1)
Area = 720
hence,
So,
put this in (1)
on solving above equation we got
and
hence,
Given Area of the rhombus = 720m^2.
We know that Area of the rhombus = (d1 * d2)/2
= > 720 = (d1 * d2)/2
= > 1440 = d1 * d2
------------------------------------------------------------------------------------------------------
Given Side of a rhombus = 41m.
We know that (Side)^2 = (d1/2)^2 + (d2/2)^2
= > (41)^2 = (d1/2)^2 + (d2/2)^2
= > 1681 = (d1/2)^2 + (d2/2)^2
= > 1681 * 4 = d1^2 + d2^2
= > 6724 = d1^2 + d2^2.
--------------------------------------------------------------------------------------------------------
Now,
We know that (a + b)^2 = a^2 + b^2 + 2ab
= > (d1 + d2)^2 = d1^2 + d2^2 + 2(d1 * d2)
= > (d1 + d2)^2 = 6724 + 2(1440)
= > (d1 + d2)^2 = 6724 + 2880
= > (d1 + d2)^2 = 9604
Therefore, the sum of diagonal of the rhombus = 98m.
Hope this helps!