Math, asked by kanhu174, 1 year ago

one side of rhombus 41m,area 720m^2 then sum of diagonal of that rhombus

Answers

Answered by gogiya167
5

Area of rhombus = ab =   \frac{d_{1} *d_{2}}{2}

where, a and b sides of rhombus and  d_{1}  and  d_{2}

are diagonals.

if, a = 41 m is a side

We, know diagonal of rhombus intersect at right angle.

hence, d_{1}^{2}  +d_{2}^{2}  = 4a^{2}  (1)

Area = 720 m^{2}

hence,  d_{123}* d_{2} =1440

So,  d_{2} =\frac{1440}{d_{1}}

put this in (1)

 d_{1}^{2}  + (\frac{1440}{d_{1}} )^{2}  = 4*41^{2}

on solving above equation we got  d_{1} =18 meter

and  d_{2}  = 80 meter

hence,  d_{1} +d_{2} =98 meter

Answered by siddhartharao77
1

Given Area of the rhombus = 720m^2.

We know that Area of the rhombus = (d1 * d2)/2

= > 720 = (d1 * d2)/2

= > 1440 = d1 * d2

------------------------------------------------------------------------------------------------------

Given Side of a rhombus = 41m.

We know that (Side)^2 = (d1/2)^2 + (d2/2)^2

= > (41)^2 = (d1/2)^2 + (d2/2)^2

= > 1681 = (d1/2)^2 + (d2/2)^2

= > 1681 * 4 = d1^2 + d2^2

= > 6724 = d1^2 + d2^2.

--------------------------------------------------------------------------------------------------------

Now,

We know that (a + b)^2 = a^2 + b^2 + 2ab

= > (d1 + d2)^2 = d1^2 + d2^2 + 2(d1 * d2)

= > (d1 + d2)^2 = 6724 + 2(1440)

= > (d1 + d2)^2 = 6724 + 2880

= > (d1 + d2)^2 = 9604

 = > (d1 + d2) = \sqrt{9604}

 = > d1 + d2 = 98


Therefore, the sum of diagonal of the rhombus = 98m.



Hope this helps!

Similar questions