Math, asked by Sellingincrease, 4 months ago

One side with 60cm and one rectangular field with length 80cm have the same perimeter . Which field has a larger area ?​

Answers

Answered by jassi1178
10

Answer:

60 ×80

=4,800 cm

Step-by-step explanation:

here your answer plz thanks my answer

Answered by thebrainlykapil
133

\large\underline{ \underline{ \sf \maltese{ \: Question:- }}}

  • One side with 60cm and one rectangular field with length 80cm have the same perimeter . Which field has a larger area ?

 \\  \\

━━━━━━━━━━━━━━━━━━━━━━━━━

\large\underline{ \underline{ \sf \maltese{ \: Given:- }}}

  • Let l be the length and b be the width of the rectangular field.
  • Length = 80cm
  • Side of Square = 60cm
  • Perimeter of Rectangle = Perimeter of Square

 \\  \\

\large\underline{ \underline{ \sf \maltese{ \: </strong><strong>Solution</strong><strong>:- }}}

\begin{gathered}\begin{gathered}\begin{gathered}: \implies \underline\blue{ \boxed{\displaystyle \sf \bold\orange{\:2( \: l \:  +  \: b \: ) \:  =  \: 4( \: Side \: )   }} }\\ \\\end{gathered}\end{gathered}\end{gathered}

\qquad \quad {:} \longrightarrow \sf{\sf{2( \: 80\:  +  \: b \: ) \:  =  \: 4 \times 60 \:  }}\\ \\

\qquad \quad {:} \longrightarrow \sf{\sf{ 160\:  +  \:2 b\:  =   \: 240 }}\\ \\

\qquad \quad {:} \longrightarrow \sf{\sf{\:2 b\:  =   \: 240\: - \: 160 }}\\ \\

\qquad \quad {:} \longrightarrow \sf{\sf{\:2 b\:  =   \: 80 }}\\ \\

\qquad \quad {:} \longrightarrow \sf{\sf{\: b\:  =   \:  \frac{80}{2} }}\\ \\

\qquad \quad {:}\longrightarrow\sf{\sf{ b \: = \:  \cancel\frac{80}{2}  }}\\ \\

\qquad\quad {:} \longrightarrow \underline \red{\boxed{\sf{Breadth \: = \: 40m  }}}

━━━━━━━━━━━━━━━━━━━━━━━━━

\underbrace\red{\boxed{ \sf \green{ Area \: of \: the \: Square \: Field }}}

 \quad {:} \longrightarrow \sf{\sf{\:( \: side \: )^{2}   }}\\ \\

 \quad {:} \longrightarrow \sf{\sf{\:( \: 60 \: )^{2}   }}\\ \\

\qquad\quad {:} \longrightarrow \underline \red{\boxed{\sf{Area \: of \: Square \: = \: 3600 {m}^{2}   }}}\\ \\

━━━━━━━━━━━━━━━━━━━━━━━━━

\underbrace\red{\boxed{ \sf \green{ Area \: of \: the \: Rectangular \: Field }}}

 \quad {:} \longrightarrow \sf{\sf{\:L \: \times \: B  }}\\ \\

 \quad {:} \longrightarrow \sf{\sf{\:\: 80 \: \times \: 40    }}\\ \\

\qquad\quad {:} \longrightarrow \underline \red{\boxed{\sf{Area \: of \: Rectangle \: = \: 3200 {m}^{2}   }}}\\ \\

━━━━━━━━━━━━━━━━━━━━━━━━━

We can clearly see that the Area of Square Field is larger

  • 3600 > 3200

\bf \therefore \; Area  \;of \; Square \: Field \: is \: larger

━━━━━━━━━━━━━━━━━━━━━━━━━

━━━━━━━━━━━━━━━━━━━━━━━━━

\large\underline{ \underline{ \sf \maltese\red{ \: Diagram:- }}}

Square:-

\setlength{\unitlength}{1cm}\begin{picture}(0,0)\thicklines\multiput(0,0)(4,0){2}{\line(0,1){4}}\multiput(0,0)(0,4){2}{\line(1,0){4}}\put(-0.5,-0.5){\bf D}\put(-0.5,4.2){\bf A}\put(4.2,-0.5){\bf C}\put(4.2,4.2){\bf B}\put(1.5,-0.6){\bf\large 60\ cm}\put(4.4,2){\bf\large 60\ m}\end{picture}

 \\  \\

Rectangle:-

\setlength{\unitlength}{1cm}\begin{picture}(0,0)\thicklines\multiput(0,0)(5,0){2}{\line(0,1){3}}\multiput(0,0)(0,3){2}{\line(1,0){5}}\put(0.03,0.02){\framebox(0.25,0.25)}\put(0.03,2.75){\framebox(0.25,0.25)}\put(4.74,2.75){\framebox(0.25,0.25)}\put(4.74,0.02){\framebox(0.25,0.25)}\multiput(2.1,-0.7)(0,4.2){2}{\sf\large 80 m}\multiput(-1.4,1.4)(6.8,0){2}{\sf\large 40 m}\put(-0.5,-0.4){\bf A}\put(-0.5,3.2){\bf D}\put(5.3,-0.4){\bf B}\put(5.3,3.2){\bf C}\end{picture}

━━━━━━━━━━━━━━━━━━━━━━━━━

━━━━━━━━━━━━━━━━━━━━━━━━━

Similar questions