Math, asked by kartik313, 1 year ago

one upon root 3 + root 2 minus 2 upon root 5 minus root 3 minus 3 upon root 2 minus root 5

Answers

Answered by DaIncredible
6
Hey friend,
Here is the answer you were looking for :


Identity used :

(x + y)(x - y) =  {x}^{2}  -  {y}^{2}

 \frac{1}{ \sqrt{3}  +  \sqrt{2} }  -  \frac{2}{ \sqrt{5}  -  \sqrt{3} }  -  \frac{3}{ \sqrt{2} -  \sqrt{5}  } \\

On rationalizing the denominators we get,

 =  \frac{1}{ \sqrt{3}  +  \sqrt{2} }  \times  \frac{ \sqrt{3}  -  \sqrt{2} }{ \sqrt{3}  -  \sqrt{2} }  -  \frac{2}{ \sqrt{5}  -  \sqrt{3} } \times  \frac{ \sqrt{5} +  \sqrt{3}  }{ \sqrt{5} +  \sqrt{3}  }   -  \frac{3}{ \sqrt{2} -  \sqrt{5}  }  \times  \frac{ \sqrt{2}  +  \sqrt{5} }{ \sqrt{2} +  \sqrt{5}  }  \\  \\  =  \frac{ \sqrt{3}  -  \sqrt{2} }{ {( \sqrt{3} )}^{2}  -  {( \sqrt{2} )}^{2} }  -  \frac{2( \sqrt{5}  +  \sqrt{3} )}{ {( \sqrt{5} )}^{2}  -   {( \sqrt{3}) }^{2}  }  -  \frac{3( \sqrt{2} +  \sqrt{5} ) }{ {( \sqrt{2} )}^{2} -  {( \sqrt{5} )}^{2}  }  \\  \\  =  \frac{ \sqrt{3}  -  \sqrt{2} }{3 - 2}  -  \frac{2 \sqrt{5} + 2 \sqrt{3}  }{5 - 3}  -  \frac{3 \sqrt{2} + 3 \sqrt{5}  }{2 - 5}  \\  \\  =  \sqrt{3}  -  \sqrt{2}  -  \frac{2 \sqrt{5}  + 2 \sqrt{3} }{2}  -  \frac{3 \sqrt{2}  + 3 \sqrt{5} }{ - 3}  \\  \\  =  \sqrt{3}  -  \sqrt{2}  -  \sqrt{5}  -  \sqrt{3}  +  \sqrt{2}  +  \sqrt{5}  \\  \\  = 0


Hope this helps!!

If you have any doubt regarding to my answer, feel free to ask in the comment section or inbox me if needed.

@Mahak24

Thanks...
☺☺
Answered by manishagarg513
0

Answer:

Step-by-step explanation:

Similar questions