Math, asked by sahil1237287150, 1 year ago

one upon sec theta minus 10 theta minus one upon cos theta is equals to one upon cos theta minus one upon sec theta + tan theta​

Answers

Answered by Anonymous
153

AnswEr :

To Prove :

\small \dfrac{1}{ \sec( \alpha ) -  \tan( \alpha )  }  -  \dfrac{1}{ \cos( \alpha ) }  =   \dfrac{1}{ \cos( \alpha ) }  -  \dfrac{1}{ \sec( \alpha )  + \tan( \alpha )  }

Proof :

I'm taking (\alpha) in the place of (\theta)

◑ Taking LHS First ;

\longrightarrow\dfrac{1}{ \sec( \alpha ) -  \tan( \alpha )  }  -  \dfrac{1}{ \cos( \alpha ) }

\longrightarrow\dfrac{1}{  \frac{1}{ \cos( \alpha ) }  -   \frac{ \sin( \alpha ) }{ \cos( \alpha ) }   }  -  \dfrac{1}{ \cos( \alpha ) }

\longrightarrow\dfrac{ \cos( \alpha ) }{ 1 -  \sin( \alpha ) }  -  \dfrac{1}{ \cos( \alpha ) }

\longrightarrow\dfrac{ \cos^{2} ( \alpha )  - 1}{ (1 -  \sin( \alpha ))\cos( \alpha ) }

\longrightarrow\dfrac{ \cos^{2} ( \alpha )  - 1 +  \sin( \alpha ) }{ (1 -  \sin( \alpha )) \cos( \alpha )}

\longrightarrow\dfrac{ - ( -  \cos^{2} ( \alpha )  +  1  -  \sin( \alpha )) }{ (1 -  \sin( \alpha )) \cos( \alpha )}

\longrightarrow\dfrac{ - ( (1-  \cos^{2} ( \alpha ) )  -  \sin( \alpha )) }{ (1 -  \sin( \alpha ))\cos( \alpha ) }

\longrightarrow\dfrac{ - ( \sin^{2} ( \alpha )   -  \sin( \alpha )) }{ (1 -  \sin( \alpha ))\cos(\alpha )}

\longrightarrow\dfrac{   \sin( \alpha ) -  \sin^{2} ( \alpha ) }{ (1 -  \sin( \alpha ))\cos( \alpha )}

\longrightarrow\dfrac{  \cancel{(1 -  \sin( \alpha ))}( \sin( \alpha ))  }{ \cancel{(1 -  \sin( \alpha ))}( \cos( \alpha ))  }

\longrightarrow\dfrac{ \sin( \alpha ) }{ \cos( \alpha ) }

\longrightarrow \large \tan( \alpha )

_________________________________

◑ Now Taking RHS ;

\longrightarrow \dfrac{1}{ \cos( \alpha ) }  -  \dfrac{1}{ \sec( \alpha )  + \tan( \alpha )  }

\longrightarrow \dfrac{1}{ \cos( \alpha ) }  -  \dfrac{1}{  \frac{1}{ \cos( \alpha ) } +  \frac{ \sin( \alpha ) }{ \cos( \alpha ) }   }

\longrightarrow \dfrac{1}{ \cos( \alpha ) }  -  \dfrac{ \cos( \alpha ) }{ 1 + \sin( \alpha )  }

\longrightarrow  \dfrac{1 +  \sin( \alpha )   - \cos^{2} ( \alpha ) }{ \cos( \alpha )( 1 + \sin( \alpha ) ) }

\longrightarrow  \dfrac{ \sin( \alpha )  + (1 - \cos^{2} ( \alpha ) ) }{ \cos( \alpha )( 1 + \sin( \alpha ) ) }

\longrightarrow  \dfrac{ \sin( \alpha )    + \sin^{2} ( \alpha ) }{ \cos( \alpha )( 1 + \sin( \alpha ) ) }

\longrightarrow  \dfrac{ \sin( \alpha )  \cancel{( 1  + \sin ( \alpha ))} }{ \cos( \alpha )\cancel{( 1 + \sin( \alpha ) )} }

\longrightarrow\dfrac{ \sin( \alpha ) }{ \cos( \alpha )}

\longrightarrow \large \tan( \alpha )

 \therefore\small\boxed{ \dfrac{1}{ \sec( \alpha ) -  \tan( \alpha )  }  -  \dfrac{1}{ \cos( \alpha ) }  =   \dfrac{1}{ \cos( \alpha ) }  -  \dfrac{1}{ \sec( \alpha )  + \tan( \alpha )  } }

Answered by bhatiamansi077
29

I THINK THIS METHOD IS EASIER .

Attachments:
Similar questions