Math, asked by mvramana3643, 2 days ago

one upon sec theta minus tan theta equal to sec theta plus tan theta

Answers

Answered by anindyaadhikari13
5

\textsf{\large{\underline{Solution}:}}

We have to prove that:

 \rm \longrightarrow \dfrac{1}{ \sec(x) -  \tan(x) } =  \sec(x) +  \tan(x)

We know that:

 \rm \longrightarrow \sec^{2}(x) - \tan^{2}(x) = 1

Using identity a² - b² = (a + b)(a - b), we get:

 \rm \longrightarrow [ \sec(x) +  \tan(x) ][ \sec(x) - \tan(x) ]= 1

 \rm \longrightarrow \sec(x) +  \tan(x)  =  \dfrac{1}{ \sec(x) - \tan(x)}

Hence Proved..!!

\textsf{\large{\underline{Learn More}:}}

1. Relationship between sides and T-Ratios.

  • sin(x) = Height/Hypotenuse
  • cos(x) = Base/Hypotenuse
  • tan(x) = Height/Base
  • cot(x) = Base/Height
  • sec(x) = Hypotenuse/Base
  • cosec(x) = Hypotenuse/Height

2. Square formulae.

  • sin²(x) + cos²(x) = 1
  • cosec²(x) - cot²(x) = 1
  • sec²(x) - tan²(x) = 1

3. Reciprocal Relationship.

  • sin(x) = 1/cosec(x)
  • cos(x) = 1/sec(x)
  • tan(x) = 1/cot(x)

4. Cofunction identities.

  • sin(90° - x) = cos(x)
  • cos(90° - x) = sin(x)
  • cosec(90° - x) = sec(x)
  • sec(90° - x) = cosec(x)
  • tan(90° - x) = cot(x)
  • cot(90° - x) = tan(x)

5. Even odd identities.

  • sin(-x) = -sin(x)
  • cos(-x) = cos(x)
  • tan(-x) = -tan(x)
Similar questions