Math, asked by Ramkr1644, 1 year ago

One year ago the ratio between Maneela’s and Shanthi’s salary was 3 : 4. The ratios of their individual salaries between last year’s and this year’s salaries are 4 : 5 and 2 : 3 respectively. At present the total of their salary is Rs. 4160. The salary of Maneela, now is?

Answers

Answered by Anonymous
11
One year ago the ratio between Maneela’s and Shanthi’s salary was 3 : 4. The ratios of their individual salaries between last year’s and this year’s salaries are 4 : 5 and 2 : 3 respectively. At present the total of their salary is Rs. 4160. The salary of Maneela, now is?

A) Rs. 1600B) Rs. 1700C) Rs. 1800D) Rs. 1900

Answer:   A) Rs. 1600 

Explanation:

Let the salaries of Maneela and Shanthi one year before be M1, S1 & now be M2, S2 respectively.

Then, from the given data,

M1/S1 = 3/4  .....(1)

M1/M2 = 4/5 .....(2)

S1/S2 = 2/3  .....(3)

and M2 + S2 = 4160  .....(4)

 

Solving all these eqtns, we get M2 = Rs. 1600.

Answered by BrainlyPrince92
3

\huge{\mathfrak{\underline{Question :}}} \\ \\ \textsf{One year ago the ratio between} \\ \textsf{Maneela’s and Shanthi’s salary was} \\ \textsf{3 : 4. The ratios of their individual} \\ \textsf{salaries between last year’s and} \\ \textsf{this year’s salaries are 4 : 5 and 2 : 3} \\ \textsf{respectively. At present the total of} \\ \textsf{their salary is Rs. 4160. The salary} \\ \textsf{of Maneela, now is?} \\ \\\huge{\mathfrak{\underline{Answer :}}} \\ \\ \underline{\boxed{\textsf{The Salary of Maneela is Rs. 1600.}}} \\ \\ \sf \huge{\mathfrak{\underline{Step-by-Step \: Explanation :}}} \\ \\  \sf{Let \: salary \: of \: Maneela \: one \: year \: ago=3k} \\  \sf{Let \: salary \: of \: Shanthi \: one \: year \: ago = 4k} \\  \\  \sf Present  \: salary \:  of  \: Maneela \\  \sf  =  \frac{3k \times 5}{4}  \\  \sf  =  \frac{15k}{4}  \\  \\ \sf Present  \: salary \:  of  \: Shanthi \\  \sf =  \frac{4k \times 3}{2}  \\  \sf  = 6k \\  \\  \underline{ \sf ATQ,} \\   \\ \implies \sf \frac{15k}{4} + 6k = 4160 \\  \implies\sf  \frac{15k + 24k}{4}  = 4160 \\ \implies \sf 15k + 24k = 4160 \times 4 \\ \implies \sf  39k = 16640 \\ \implies \sf k = \frac{16640}{39}  \\  \\ \sf Salary  \: of \:  Maneela \: now \\   \sf =  \frac{15k}{4}  \\  \sf  =  \frac{15}{4}  \times  \frac{16640}{39}  \\  \sf  = 1600

Similar questions