Math, asked by hunter5989, 7 hours ago

One zero of polynomial 2x2 - 5x - (2k + 1) is double than second zero. Find out both zeroes and K.

Answers

Answered by BrainlyConqueror0901
59

\tt\blue{\underline{Answer:}}

\green{\tt\therefore \alpha= \frac{5}{3}  }\\

\green{\tt \therefore\beta = \frac{5}{6}  }\\

\green{\tt  \therefore k = \frac{-17}{9}  }\\

 \tt \green { \underline{ Given : }} \\  \tt: \implies Eqn  = 2x^{2}  - 5x - (2k + 1) \\  \\  \tt \red { \underline{ To \: Find : }} \\  \tt:  \implies Value \: of \: zeroes = ? \\  \\ \tt:  \implies Value \: of \: k = ?

\tt\orange{\underline{Step-by-step\:\:explanation:}}

According to given question :

 \sf Let \: two \: zeroes \: be \:  \alpha  \: and \:  \beta  \\  \\    \tt\because  \alpha  = 2 \beta  \:  \:  \: (Given) \\  \\   \bold{As \: we \: know \: that} \\  \tt:  \implies  \alpha  +  \beta  =  \frac{ - b}{a}  \\  \\ \tt:  \implies  \alpha  +  \beta  =  \frac{ - ( - 5)}{2}  \\  \\ \tt:  \implies  \alpha  +  \beta  = \frac{5}{2}  \\  \\ \tt:  \implies  2 \beta +  \beta  = \frac{5}{2}  \\  \\ \tt:  \implies    3\beta  = \frac{5}{2}  \\  \\ \green{\tt:  \implies  \beta  = \frac{5}{6}}  \\  \\  \sf{putting \: value \: of \:  \beta } \\  \tt:  \implies  \alpha  +  \frac{5}{6}  =  \frac{5}{2}  \\  \\ \tt:  \implies  \alpha   =  \frac{5}{2}  -  \frac{5}{6}  \\  \\ \tt:  \implies  \alpha   =  \frac{15 - 5}{6}  \\  \\ \green{\tt:  \implies  \alpha   =  \frac{10}{6}=\frac{5}{3}}  \\  \\   \bold{Again :}  \\  \tt:  \implies  \alpha  \beta  =  \frac{c}{a}  \\  \\ \tt:  \implies  \frac{10}{6}  \times  \frac{5}{6}  =  \frac{ - (2k + 1)}{2}  \\  \\ \tt:  \implies  \frac{50}{36}  =  \frac{ - 2k - 1}{2}  \\  \\ \tt:  \implies 50 = 18( - 2k - 1) \\  \\ \tt:  \implies 50 =  - 36k - 18 \\  \\ \tt:  \implies 36k =- 50 - 18 \\  \\ \tt:  \implies 36k = -68 \\  \\  \green{\tt:  \implies k =  \frac{-68}{36}  =  \frac{-17}{9}  }

Answered by user0888
41

\Huge\textrm{\underline{Answer}}

\rm\large\rightarrow k=-\dfrac{17}{9}

\rm\large\rightarrow x=\dfrac{5}{6}\textrm{ or }x=\dfrac{5}{3}

\Huge\textrm{\underline{Solution}}

\textrm{Given polynomial,}

\rm\rightarrow2x^2-5x-(2k+1)

\textrm{Let two zeros be }\rm{x=\alpha,\beta.}

\rm\rightarrow \beta=2\alpha

\rm\text{The sum of the zeros is }-\dfrac{b}{a}.

\rm{\rightarrow}3\alpha=-\dfrac{-5}{2}

\rm{\rightarrow}\alpha=\dfrac{5}{6}

\textrm{Hence,}

\rm\rightarrow\red{\underline{\begin{cases} & \alpha=\dfrac{5}{6} \\  & \beta=\dfrac{5}{3} \end{cases}}\tiny{\text{//}}}

\rm\text{The product of the zeros is }\dfrac{c}{a}.

\rm\rightarrow\dfrac{5}{6}\times\dfrac{5}{3}=\dfrac{-(2k+1)}{2}

\rm\rightarrow\dfrac{25}{9}=-(2k+1)

\rm\rightarrow9(2k+1)=-25

\rm\rightarrow18k+9=-25

\rm\rightarrow18k=-34

\rm\rightarrow \red{\underline{k=-\dfrac{17}{9}}\tiny{\text{//}}}

\Huge\textrm{\underline{Verification}}

\textrm{Required polynomial,}

\rm\rightarrow2x^2-5x-(2k+1)

\rm=2x^2-5x-\left(-\dfrac{34}{9}+1\right)

\rm=2x^2-5x-\left(-\dfrac{25}{9}\right)

\rm=2x^2-5x+\dfrac{25}{9}

\textrm{The sum of zeros}

\rm\rightarrow-\dfrac{-5}{2}=\dfrac{5}{2}

\rightarrow\dfrac{5}{6}+\dfrac{5}{3}=\dfrac{5}{2}

\textrm{The product of zeros}

\rightarrow\dfrac{\frac{25}{9}}{2}=\dfrac{25}{18}

\rightarrow\dfrac{5}{6}\times\dfrac{5}{3}=\dfrac{25}{18}

\large\textrm{{\underline{Hence verified.}}}

Similar questions