Math, asked by Ꚃhαtαkshi, 10 months ago

only 1st
please give solve on paper. ....
no ackward answer​

Attachments:

Answers

Answered by prabhleen643
4

above is your answer mate

Attachments:
Answered by SillySam
4

To do :

  • Rationalise the denominator

What it actually means?

  • To rationalize a denominator means to change the irrational denominator into a rational one .
  • Most of the times this irrational denominator is in square root and hence to change it into rational , we multiply the numerator as well as denominator of the fraction by the similar square root.
  • If the denominator consists two or more terms , both numerator and denominator are multiplied with the same digits except that the sign between the terms are reversed .
  • For example : If denominator is 2+√3 , both numerator and denominator will be multiplied by 2-√3 .

1. \:  \:   \tt\dfrac{7 + 3 \sqrt{5} }{7 - 3 \sqrt{5} }

 \tt \dfrac{7 + 3 \sqrt{5} }{7 - 3 \sqrt{5} }  \times  \dfrac{7 + 3 \sqrt{5} }{7 + 3 \sqrt{5} }  \\  \\  \tt  =  \frac{(7 + 3 \sqrt{5})^{2}  }{ {7}^{2}  - (3 \sqrt{5})^{2}  }  \\  \\  \tt =  \frac{49 + 45 + 42 \sqrt{5} }{49 - 45}  \\  \\  \tt =  \frac{94 + 42 \sqrt{5} }{4}  \\  \\  \tt =  \frac{2(47 + 21 \sqrt{5}) }{4}  \\  \\   \boxed{\tt =  \frac{47 + 21 \sqrt{5} }{2}}

 \tt 2. \dfrac{3 - 2 \sqrt{2} }{3 + 2 \sqrt{2} }  \\  \\  \tt =  \frac{3 - 2 \sqrt{2} }{3 + 2 \sqrt{2} }  \times  \frac{3  -  2 \sqrt{2} }{3 - 2 \sqrt{2} }  \\  \\  \tt =  \frac{(3 - 2 \sqrt{2} )^{2} }{ {3}^{2}  - ( {2 \sqrt{2} ) ^{2} } }  \\  \\  \tt =  \frac{9 + 8 - 12 \sqrt{2} }{9 - 8}  \\  \\  \tt =  \frac{17 - 12 \sqrt{2} }{1}  \\  \\   \boxed{\tt = 17 - 12 \sqrt{2} }

 \tt 3. \dfrac{5 - 3 \sqrt{14} }{7 + 2 \sqrt{14} }  \\  \\  \tt =  \frac{5 - 3 \sqrt{14} }{7 + 2 \sqrt{14} }  \times   \frac{7 - 2 \sqrt{14} }{7 - 2 \sqrt{14} }  \\  \\  \tt =  \frac{5(7 - 2 \sqrt{14} ) - 3 \sqrt{14}(7 - 2 \sqrt{14})  }{ {7}^{2}  - ( {2 \sqrt{14} }^{2} )}  \\  \\  \tt =  \frac{35 - 10 \sqrt{14}  - 21 \sqrt{14}  + 84}{49 - 56}  \\  \\  \tt =  \frac{119 - 31 \sqrt{14} }{ - 7}  \\  \\   \boxed{\tt =   \frac{ - 119 + 31 \sqrt{14} }{7}}

Similar questions