only ans if u know q30
Attachments:
Answers
Answered by
1
Solution:(Instead of θ I use A)
_____________________________________________________________
Given:
2cos A - sin A = x,
cos A - 3 sin A = y
_____________________________________________________________
To Prove:
value of 2x² + y² - 2xy = 5
_____________________________________________________________
Proof:
x² = (2cos A - sin A)²
=> 4cos²A - 4sin A cos A + sin²A
=> 3cos²A - 4sin A cos A + 1
_____________________________
y² = ( cos A - 3sin A )²
=> cos²A - 6sin A cos A + 9 sin² A
=> 8sin²A - 6sinA cos A + 1
_____________________________
xy = (2cos A - sin A) (cos A - 3 sin A)
=> 2cos²A - 6sin A cos A - sin A cos A + 3sin²A
=> sin²A - 7 sin A cos A + 2
_____________________________________
2x² + y² - 2xy = 5,..
=> 2 ( 3cos²A - 4sin A cos A + 1) + ( 8sin²A - 6sinA cos A + 1) - 2 (sin²A - 7 sin A cos A + 2) = 5,.
=> 6cos²A - 8sinAcosA +2 +
8sin²A - 6sinAcosA + 1
- 2sin²A + 14sinAcosA - 4 = 5
=> 6cos²A + 8sin²A -2sin²A + 2 + 1 - 4 -14sinAcosA + 14sinAcosA = 5
=> 6 sin²A + 6 cos²A +3 -4 = 5
=> 6(sin²A + cos²A) - 1 = 5
=> 6(1) - 1 = 5
=> 6-1 =5
=> 5 = 5,.
=> ∴ LHS = RHS,.
Hence proved,.
_____________________________________________________________
Hope it Helps!!
_____________________________________________________________
Given:
2cos A - sin A = x,
cos A - 3 sin A = y
_____________________________________________________________
To Prove:
value of 2x² + y² - 2xy = 5
_____________________________________________________________
Proof:
x² = (2cos A - sin A)²
=> 4cos²A - 4sin A cos A + sin²A
=> 3cos²A - 4sin A cos A + 1
_____________________________
y² = ( cos A - 3sin A )²
=> cos²A - 6sin A cos A + 9 sin² A
=> 8sin²A - 6sinA cos A + 1
_____________________________
xy = (2cos A - sin A) (cos A - 3 sin A)
=> 2cos²A - 6sin A cos A - sin A cos A + 3sin²A
=> sin²A - 7 sin A cos A + 2
_____________________________________
2x² + y² - 2xy = 5,..
=> 2 ( 3cos²A - 4sin A cos A + 1) + ( 8sin²A - 6sinA cos A + 1) - 2 (sin²A - 7 sin A cos A + 2) = 5,.
=> 6cos²A - 8sinAcosA +2 +
8sin²A - 6sinAcosA + 1
- 2sin²A + 14sinAcosA - 4 = 5
=> 6cos²A + 8sin²A -2sin²A + 2 + 1 - 4 -14sinAcosA + 14sinAcosA = 5
=> 6 sin²A + 6 cos²A +3 -4 = 5
=> 6(sin²A + cos²A) - 1 = 5
=> 6(1) - 1 = 5
=> 6-1 =5
=> 5 = 5,.
=> ∴ LHS = RHS,.
Hence proved,.
_____________________________________________________________
Hope it Helps!!
droov696:
thanks
Similar questions