Math, asked by PappuBhau, 2 months ago

Only Champs Can Answer

Let's Go

Show Me who is the Champion .

Find the value of Integral

 \int \dfrac{sin \dfrac{5x}{2} }{sin \dfrac{x}{2} }

Answers

Answered by SparklingBoy
116

Answer :-))

x + 2sinx + sin2x + C

Solution:-)

 \int \dfrac{sin \dfrac{5x}{2} }{sin \dfrac{x}{2}  }  \\  \\

Multiply Numerator and Denominator by

cos \dfrac{x}{2}

 \int \dfrac{sin \dfrac{5x}{2}.cos \dfrac{x}{2}  }{sin \dfrac{x}{2}. cos \dfrac{x}{2} }dx \\  \\  =  \int \dfrac{sin{3x}  + sin2x}{sinx}dx \\  \\  =  \int  \frac{(3sinx - 4sin {}^{3}x)  + 2sinx.cosx}{sinx} dx \\  \\  =  \int (3 - 4 {sin}^{2} x + 2cosx)dx \\  \\  \int(3 - 2(1 - cos2x + 2cosx))dx \\  \\  =  \int(1 + cos2x + 2cosx)dx \\  \\  = x + 2sinx + sin2x + C

where C is the constant of integration

Answered by ram36930
80

Answer:

For showing full answer click on photo.

Attachments:
Similar questions