Math, asked by Anonymous, 1 year ago

only for bainly people ......................

Attachments:

Answers

Answered by lodhiyal16
12

Answer: 2350


Step-by-step explanation:  x + 1/x = 5 ( given )

Find the value of x⁵ + 1/x⁵ = ?

So,

x + 1/x = 5 ...(1)

Squaring both sides

( x+1/x)² = 5²

x² + 1/x² + 2  =25

x² + 1/x² = 25 - 2

x² + 1/x ² = 23  ....(2)

Cube of the equation

x³ + 1/x³ = ( x+ 1/x )³ - 3 (x +1/x)

x³ + 1/x ³ = (5)³ - 3 (5)

x³ + 1/x³ = 125 -15

x³ + 1/x³ = 110 ...(3)

Now taking all equation

(x² + 1/x² ) (x³ + 1/x³ ) = (x⁵ +1/x +x + 1/x⁵)

23 ₓ 110 = x⁵ + 1/x⁵

2530 = x⁵ + 1/x⁵


Answered by sherafgan354
12

Answer:

7950

Step-by-step explanation:

Given

x + \frac{1}{x}=6

x^{2} + \frac{1}{x^{2}}=?

Now given is

x + \frac{1}{x}=6         ..............(i)

Taking square of both sides


(x + \frac{1}{x})^{2}=6^{2}

we know that (a+b)^{2}=a^{2}+b^{2}+2ab

so the given becomes

x^{2} + \frac{1}{x^{2}}+2=36

x^{2} + \frac{1}{x^{2}}=36-2

x^{2} + \frac{1}{x^{2}}=34                ...............(ii)

Now Taking cube of the equation (i)

(x + \frac{1}{x})^{3}=6^{3}

the formula for cube is (a+b)^{3}=a^{3}+b^{3}-3(a+b)(

The equation becomes

x^{3}+\frac{1}{x^{3} }-3(x+\frac{1}{x})=216

Also the value of  x+\frac{1}{x} is given so putting it

x^{3}+\frac{1}{x^{3} }-3(6)=216

x^{3}+\frac{1}{x^{3} }-18)=216

x^{3}+\frac{1}{x^{3} })=216+18

x^{3}+\frac{1}{x^{3} })=234                ...............(iii)

Now to get value of it

multiplying eq (ii) with eq(iii)

(x^{2}+\frac{1}{x^{2} }) * (x^{3}+\frac{1}{x^{3} })= 234*34

(x^{2}+\frac{1}{x^{2} }) * (x^{3}+\frac{1}{x^{3} })= 7956

x^{5}+\frac{1}{x^{5} } + x +\frac{1}{x}=7956

putting the known values

x^{5}+\frac{1}{x^{5} } +6=7956

x^{5}+\frac{1}{x^{5} }=7956-6

x^{5}+\frac{1}{x^{5} }=7950







Similar questions