Math, asked by Itzcutemuffin, 1 month ago


Only for Brainly moderators , Brainly stars and brainly best users

▬▬▬▬ஜ۩۞۩ஜ▬▬▬▬

\huge\color{cyan}\boxed{\colorbox{black}{Question❤}} in the attachment

▬▬▬▬ஜ۩۞۩ஜ▬▬▬▬

\color{red}\boxed{\colorbox{white}{Best of luck}}

Attachments:

Answers

Answered by amitkumar44481
289

Answer :

  • a = 2.
  • b = 1.

SolutioN :

 \tt \rightarrow \:  \dfrac{8 - i}{3 - 2i}  \\  \\

 \tt \bullet  \:  \:  \:  \:  \:   (a + b)(a - b) =  {a}^{2}  -   {b}^{2}. \\  \\

 \tt \rightarrow \:  \dfrac{8 - i}{3 - 2i} \times  \frac{3  + 2i}{3 +2 i}   \\  \\

 \tt \rightarrow \:  \dfrac{(8 - i)(3  + 2i)}{ {(3)}^{2}  -{( 2i)}^{2} }  \\  \\

 \tt \rightarrow \:  \dfrac{24 + 16i - 3i - 2 {i}^{2} }{ 9  -{ 4i}^{2} }  \\  \\

 \tt \bullet \:  \:  \:  \:  \:  Note :  \: i = \sqrt{  -1}.   \\  \\

 \tt \rightarrow \:  \dfrac{26 + 13i}{ 13 }  \\  \\

Compare with a + bi form.

  • a = 26 / 13 = 2.
  • bi = 13i / 13 = 1.

Therefore, the value of a is 2 and b is 1.

Answered by Itzheartcracer
112

Given :-

8 - i/3 - 2i. If the expression above is rewritten in the form of a + bi, where a and b are real number

To Find :-

Value of a

Solution :-

\sf\dfrac{8-i}{3-2i}

We may rationalize the denominator by using the algebric identity

(a + b)(a - b) = a² - b²

\sf\dfrac{8-i}{3-2i}\times\dfrac{3-2i}{3-2i}

\sf\dfrac{(8-i)(3-2i)}{(3-2i)(3-2i)}

\sf \dfrac{24 + 16i - 3i - 2i^2}{(3)^2-(2i)^2}

\sf\dfrac{24+16i-3i-2i^2}{9 - 4i^2}

Using i = √-1

\sf \dfrac{24+16(\sqrt{-1}) - 3(\sqrt{-1}) - 2(\sqrt{-1})^2}{9 - 4(\sqrt{-1}^2)}

\sf \dfrac{24+\sqrt{-16} + \sqrt{3}+ 2(1)}{9 - 4(-1)}

\sf \dfrac{24 + \sqrt{-16} + \sqrt{3} +2}{9 - (-4)}

\sf \dfrac{26 + \sqrt{-16} + \sqrt{3} }{13}

\sf\dfrac{26 + \sqrt{-13}}{13}

Using √-13 = 13i as 13 × √-1 = √-13

\sf\dfrac{26+13i}{13}

On comparing with given form i.e a + bi

We get

\sf \dfrac{a+bi}{2}

\sf \dfrac{26+13i}{13}

\sf 2 = a


amitkumar44481: Great :-)
Similar questions