Math, asked by fiercequeenon, 12 hours ago

Only for Brainly moderators , Brainly stars and brainly best users ▬▬▬▬ஜ۩۞۩ஜ▬▬▬▬
1/secA+tanA - 1/cosA=1/cosA-1/secA-tanA
Prove it​

Answers

Answered by mathdude500
4

\large\underline{\sf{Solution-}}

Consider, LHS

\rm :\longmapsto\:\dfrac{1}{secA + tanA}  - \dfrac{1}{cosA}

On rationalizing the first term,

\rm \:  =  \: \dfrac{1}{secA + tanA}  \times \dfrac{secA - tanA}{secA - tanA}  - secA

We know,

\boxed{ \bf{ \:(x + y)(x - y) =  {x}^{2}  -  {y}^{2} }}

So, using this, we get

\rm \:  =  \: \dfrac{secA - tanA}{ {sec}^{2} A -  {tan}^{2} A}  - secA

We know,

\boxed{ \bf{ \: {sec}^{2}x -  {tan}^{2}x = 1}}

So, using this, we get

\rm \:  =  \: secA - tanA - secA

\rm \:  =  \: -  \:  tanA

So,

\rm :\longmapsto\:\boxed{ \bf{ \:\dfrac{1}{secA + tanA}  - \dfrac{1}{cosA}  =  -  \: tanA}} -  - (1)

Now, Consider,

\rm :\longmapsto\:\dfrac{1}{cosA}  - \dfrac{1}{secA + tanA}

On rationalizing the second term, we get

\rm \:  =  \: secA - \dfrac{1}{secA - tanA}  \times \dfrac{secA + tanA}{secA + tanA}

\rm \:  =  \: secA - \dfrac{secA + tanA}{ {sec}^{2} A -  {tan}^{2} A}

\rm \:  =  \: secA - (secA + tanA)

\rm \:  =  \: secA - secA  -  tanA

\rm \:  =  \: -  \:  tanA

So,

\rm :\longmapsto\:\boxed{ \bf{ \:\dfrac{1}{cosA}  - \dfrac{1}{secA + tanA} =   -  \: tanA}} -  - (2)

From equation (1) and (2), we concluded that

\boxed{ \bf{ \: \frac{1}{secA + tanA} -  \frac{1}{cosA} =  \frac{1}{cosA} -  \frac{1}{secA + tanA}}}

Additional Information:-

Relationship between sides and T ratios

sin θ = Opposite Side/Hypotenuse

cos θ = Adjacent Side/Hypotenuse

tan θ = Opposite Side/Adjacent Side

sec θ = Hypotenuse/Adjacent Side

cosec θ = Hypotenuse/Opposite Side

cot θ = Adjacent Side/Opposite Side

Reciprocal Identities

cosec θ = 1/sin θ

sec θ = 1/cos θ

cot θ = 1/tan θ

sin θ = 1/cosec θ

cos θ = 1/sec θ

tan θ = 1/cot θ

Co-function Identities

sin (90°−x) = cos x

cos (90°−x) = sin x

tan (90°−x) = cot x

cot (90°−x) = tan x

sec (90°−x) = cosec x

cosec (90°−x) = sec x

Fundamental Trigonometric Identities

sin²θ + cos²θ = 1

sec²θ - tan²θ = 1

cosec²θ - cot²θ = 1

Similar questions