Only for Brainly moderators , Brainly stars and brainly best users ▬▬▬▬ஜ۩۞۩ஜ▬▬1 + cot A + tan a into Sin A minus Cos A is equal to sec a upon cos square A minus Cos A upon sec square A
Answers
Answer:
L.H.S
=(1+ cos A /sinA + sinA/cosA)(sinA-CosA
=(cosAsinA + cos^2A + Sin^2A/cosAsinA )(sinA- cosA). (take LCM)
=(cosA sinA + 1/cosAsinA) (sin A- cos A ).(sin^2A +cos^2 A = 1)
= cosA sin^2A -cos^2 A sin A + sinA - cosA / cos A sin A
=sinA ( 1 - cos^2 A) -cosA (1- sin^2A)/ cosAsinA
sinA sin^2A - cos A cos^2 /cosAsinA
sin^3A - cos^3A/cosAsinA
sin^3A/ sinAcosA - cos^3A/cosA sinA
sin^2A /cosA - cos^2 /sinA
=secA/ cosecA - cosecA / sec^2.
HENCE PROVED
L.H.S = R.H.S
Step-by-step explanation:
thanks..
Plz mark as brainliest..
Appropriate Question
The given Trigonometric function is
We know,
On substituting these, we get
can be re-arranged as
We know,
So, using this, we get
We know,
So, using these, we get
Hence,
Additional Information:-
Relationship between sides and T ratios
sin θ = Opposite Side/Hypotenuse
cos θ = Adjacent Side/Hypotenuse
tan θ = Opposite Side/Adjacent Side
sec θ = Hypotenuse/Adjacent Side
cosec θ = Hypotenuse/Opposite Side
cot θ = Adjacent Side/Opposite Side
Reciprocal Identities
cosec θ = 1/sin θ
sec θ = 1/cos θ
cot θ = 1/tan θ
sin θ = 1/cosec θ
cos θ = 1/sec θ
tan θ = 1/cot θ
Co-function Identities
sin (90°−x) = cos x
cos (90°−x) = sin x
tan (90°−x) = cot x
cot (90°−x) = tan x
sec (90°−x) = cosec x
cosec (90°−x) = sec x
Fundamental Trigonometric Identities
sin²θ + cos²θ = 1
sec²θ - tan²θ = 1
cosec²θ - cot²θ = 1