Math, asked by poojachaudharyss, 1 month ago

Only for Brainly moderators , Brainly stars and brainly best users ▬▬▬▬ஜ۩۞۩ஜ▬▬Find the ratio in which point P whose ordinate is -3 divides the join of A(-2,3) and B(5,-15/2).​

Answers

Answered by mathdude500
4

\large\underline{\sf{Solution-}}

➢ Let the required ratio in which point P whose ordinate is -3 divides the join of A(-2,3) and B(5,-15/2). be k : 1.

↝  Let assume that the abscissa of Coordinate P be x, so that coordinate of P be (x, - 3).

We know,

Section Formula

Let us consider a line segment joining the points A (x₁ , y₁ ) and B (x₂ , y₂) and Let C (x, y) be any point on AB which divides AB internally in the ratio m : n, then coordinates of C is

 \red{\boxed{ \rm{ \:(x,y) = \bigg(\dfrac{mx_2 + nx_1}{m + n},\:  \dfrac{my_2 + ny_1}{m + n} \bigg)}}}

On substituting the values, we get

\rm :\longmapsto\:(x, - 3) = \bigg(\dfrac{5k - 2}{k + 1}, \: \dfrac{ - \dfrac{15k}{2} + 3 }{k + 1} \bigg)

On comparing, y - coordinates on both sides, we get

\rm :\longmapsto\: - 3= \dfrac{ - \dfrac{15k}{2} + 3 }{k + 1}

\rm :\longmapsto\: - 3= \dfrac{\dfrac{ - 15k + 6}{2}}{k + 1}

\rm :\longmapsto\: - 3k  - 3 = \dfrac{ - 15k + 6}{2}

\rm :\longmapsto\: - 6k  - 6 =  - 15k + 6

\rm :\longmapsto\: - 6k + 15k =  6 + 6

\rm :\longmapsto\:9k =  12

\rm :\longmapsto\:3k =  4

\bf\implies \:k = \dfrac{4}{3}

  • So, required ratio = 4 : 3

Additional Information :-

1. Distance Formula :

Let us consider a line segment joining the points A (x₁ , y₁ ) and B (x₂ , y₂), then distance between AB is

 \red{\boxed{ \:  \:  \:  \rm{ \: AB =  \sqrt{ {(x_2 - x_1)}^{2}  +  {(y_2 - y_1)}^{2} } \:  \:  \: }}}

2. Midpoint Formula :-

Let us consider a line segment joining the points A (x₁ , y₁ ) and B (x₂ , y₂) and Let C (x, y) be mid point on AB , then coordinates of C is

 \red{\boxed{  \:  \:  \: \rm{ \:(x,y) = \bigg(\dfrac{x_2 + x_1}{2},\:  \dfrac{y_2 + y_1}{2} \bigg) \:  \:  \:  \: }}}

Similar questions