Math, asked by poojachaudharyss, 1 month ago

Only for Brainly moderators , Brainly stars and brainly best users !▬▬ஜ۩۞۩ஜ▬▬ 1 + cot A + tan a into Sin A minus Cos A is equal to sec a upon cos square A minus Cos A upon sec square A..​ Solve on paper​

Answers

Answered by MysticSohamS
1

Answer:

hey here is your proof in above pics

pls mark it as brainliest

Step-by-step explanation:

to \: prove =  \\ (1 + cot \: A + tan \: A)(sin \: A - cos \: A) =  \frac{sec \:A }{cosec  {}^{2}  \:A }  -  \frac{cosec  \:  A}{sec \: {}^{2}  A}  \\  \\ so \: let \:then  \\ LHS = (1 + tan \: A + cot \: A)(sin \: A - cos \: A) \\  \\ RHS =  \frac{sec \:A}{cosec {}^{2}  \:A }  -  \frac{cosec \:A}{sec {}^{2} \:A  }  \\  \\ considering \: LHS \: first \\  = (1 + tan \: A + cot \: A)(sin \: A - cos \: A) \\  \\  = (1 +  \frac{sin \:A }{cos \: A}  \:  +  \:  \frac{cos \:A }{sin \:A } \:  )(sin \: A - cos \: A \: ) \\  \\  = (1 +  \frac{sin {}^{2}  \: A + cos {}^{2} \:A  }{sin \:A.cos \: A }  \: )(sin \: A - cos \: A) \\  \\  =(  \: 1 +  \frac{1}{sin \: A.cos \:A }  \: )(sin \: A - cos \: A) \\  \\  =(  \:  \frac{1 + sin \:A.cos \:  A}{sin \: A.cos \:A }  \: )(sin \: A - cos \: A)

now \: considering \: RHS  \\ \\  =  \frac{sec \: A}{cosec \:  {}^{2} \: A }  \:  -  \:  \frac{cosec \:A }{sec {}^{2} \: A }  \\  \\  =  \frac{sec {}^{3}  \:A - cosec {}^{3}   \: A}{cosec {}^{2} \: A.sec {}^{2}  \: A}  \\  \\  =   \frac{ \frac{1}{cos {}^{3} \: A } -  \frac{1}{sin {}^{3}  \: A}  }{ \frac{1}{sin {}^{2} \:A   }  \times  \frac{1}{cos {}^{2} \: A } }  \\  \\  =  \frac{ \frac{ \frac{sin {}^{3}  \: A  \: -  \: cos {}^{3} \: A }{sin {}^{3}  \: A.cos {}^{3} \: A } }{1} }{sin {}^{2} \: A.cos {}^{2}   \:A }  \\  \\  =  \frac{sin {}^{3} \:  A - cos {}^{3}  \:A }{sin \:A.cos \: A}  \\  \\

so \: here \:  \\ sin {}^{3}  \: A - cos {}^{3}  \: A  \: \: is \: in \: form \: a {}^{3}  \:  -  \: b {}^{3}  \\  \\ so \: we \: know \: that \\ a {}^{3}  \:  -  \: b {}^{3}  = (a - b)(a {}^{2}  + b {}^{2}  + ab) \\  \\ hence \: accordingly \\  \\  =  \frac{(sin \: A - cos \: A)(sin {}^{2}  \:A + cos {}^{2}  \: A + sin \: A.cos \:A)  }{sin \: A.cos \:A }  \\  \\  =  \frac{(sin \: A - cos \: A)(1 + sin \:A.cos \: A) }{sin \: A.cos \:A }  \\  \\ hence  \: then \\ \: LHS=RHS \\  \\ thus \: proved

Similar questions