Math, asked by poojachaudharyss, 7 hours ago

Only for Brainly moderators , Brainly stars and brainly best users !▬▬ஜ۩۞۩ஜ▬▬ 1 + cot A + tan a into Sin A minus Cos A is equal to sec a upon cos square A minus Cos A upon sec square A..​ Solve on paper​

Answers

Answered by sunilratnakar1970
0

Answer:

To prove: (1+\cot A +\tan A)(\sin A -\cos A)=\dfrac{\sec A}{\text {cosec}^2 A}- \dfrac{\text {cosec}}{\sec ^2 A}(1+cotA+tanA)(sinA−cosA)=

cosec

2

A

secA

sec

2

A

cosec

Step-by-step explanation:

Consider L.H.S.

\begin{gathered}(1+\cot A +\tan A)(\sin A -\cos A)\\\\= (1 + \dfrac{\cos A}{\sin A}+\dfrac{\sin A}{\cos A})(\sin A- \cos A)\\\\= (1+ \dfrac{\cos^2 A +\sin ^2 A}{\sin A \cos A} )(\sin A- \cos A)\\\\=(1+\dfrac{1}{\sin A \cos A}) (\sin A- \cos A) \tex{------ }(\because \sin^2A +\cos^2A =1})\\\\= \dfrac{1+\sin A \cos A}{\sin A \cos A} (\sin A- \cos A)\end{gathered}

Now consider R.H.S.

we have

\begin{gathered}\dfrac{\sec A}{\text {cosec}^2 A}- \dfrac{\text {cosec}}{\sec ^2 A}\\\\=\dfrac{\sin^2 A}{\cos A} -\dfrac{\cos^2 A}{\sin A} \\\\= \dfrac{\sin^3 A-\cos ^3 A}{\sin A\cos A} \\\\= \dfrac{(\sin A-\cos A)(\sin ^2 A +\cos ^2 A + \sin A\cos A)}{\sin A \cos A} \\\\\text{}[\because a^3-b^3=(a-b)(a^2+b^2+ab)]\\\\=\dfrac{(\sin A-\cos A)(1 + \sin A\cos A)}{\sin A \cos A}\end{gathered}

cosec

2

A

secA

sec

2

A

cosec

=

cosA

sin

2

A

sinA

cos

2

A

=

sinAcosA

sin

3

A−cos

3

A

=

sinAcosA

(sinA−cosA)(sin

2

A+cos

2

A+sinAcosA)

[∵a

3

−b

3

=(a−b)(a

2

+b

2

+ab)]=

sinAcosA

(sinA−cosA)(1+sinAcosA)

Now as L.H.S. = R.H.S

Hence, proved the required result

Step-by-step explanation:

please mark me as BRAINLIST

Answered by itzstylishbandi
1

\large \underbrace \mathfrak \red{Answer\:is\:in\:attachment}

\large\pink{\sf{♡︎ʜᴏᴘᴇ\:ɪᴛ\:ʜᴇʟᴘs\:ʏᴏᴜ♡︎}}

Attachments:
Similar questions