Math, asked by khushi15686, 1 month ago

Only for moderators and brainly stars

x = tan( \frac{1}{a} logy)

Prove that,

( {x}^{2} +  {a}^{2} )y_2 + (2x - a)y_1 = 0

Answers

Answered by mathdude500
30

Appropriate Question :-

If

\rm :\longmapsto\:x = tan\bigg[\dfrac{1}{a}logy\bigg]

Prove that,

\rm :\longmapsto\:( {x}^{2} + 1)y_2 + (2x -  a)y_1 = 0

 \red{\large\underline{\sf{Solution-}}}

Given that,

\rm :\longmapsto\:x = tan\bigg[\dfrac{1}{a}logy\bigg]

can be rewritten as

\rm :\longmapsto\: {tan}^{ - 1}x = \dfrac{1}{a}logy

\rm :\longmapsto\: a{tan}^{ - 1}x = logy

On differentiating both sides w. r. t. x, we get

\rm :\longmapsto\: \dfrac{d}{dx} a{tan}^{ - 1}x =\dfrac{d}{dx} logy

We know,

\boxed{ \tt{ \: \dfrac{d}{dx} {tan}^{ - 1}x =  \frac{1}{ {x}^{2}  + 1}}}

and

\boxed{ \tt{ \: \dfrac{d}{dx}logx =  \frac{1}{x}}}

So, on substituting the values, we get

\rm :\longmapsto\:a \times \dfrac{1}{ {x}^{2}  + 1}  = \dfrac{1}{y}\dfrac{d}{dx}y

\rm :\longmapsto\: \dfrac{a}{ {x}^{2}  + 1}  = \dfrac{1}{y}y_1

\bf\implies \:\boxed{ \tt{ \: ( {x}^{2} + 1)y_1 = ay \: }}

On differentiating both sides w. r. t. x, we get

\rm :\longmapsto\:\dfrac{d}{dx}( {x}^{2}  + 1)y_1 = \dfrac{d}{dx}ay

We know,

\boxed{ \tt{ \: \dfrac{d}{dx}u.v \:  =  \: u\dfrac{d}{dx}v +v\dfrac{d}{dx}u \: }}

So, using this, we get

\rm :\longmapsto\:( {x}^{2} + 1)\dfrac{d}{dx}y_1 + y_1\dfrac{d}{dx}( {x}^{2} + 1) = ay_1

We know,

\boxed{ \tt{ \: \dfrac{d}{dx} {x}^{n} =  {nx}^{n - 1} \: }}

So, using this, we get

\rm :\longmapsto\:( {x}^{2} + 1)y_2 + 2xy_1 = ay_1

\rm :\longmapsto\:( {x}^{2} + 1)y_2 + 2xy_1  -  ay_1 = 0

 \red{\rm :\longmapsto\:\boxed{ \tt{ \: ( {x}^{2} + 1)y_2 + (2x -  a)y_1 = 0}}}

Hence, Proved

More to know :-

\begin{gathered}\boxed{\begin{array}{c|c} \bf f(x) & \bf \dfrac{d}{dx}f(x) \\ \\  \frac{\qquad \qquad}{} & \frac{\qquad \qquad}{} \\ \sf k & \sf 0 \\ \\ \sf sinx & \sf cosx \\ \\ \sf cosx & \sf  -  \: sinx \\ \\ \sf tanx & \sf  {sec}^{2}x \\ \\ \sf cotx & \sf  -  {cosec}^{2}x \\ \\ \sf secx & \sf secx \: tanx\\ \\ \sf cosecx & \sf  -  \: cosecx \: cotx\\ \\ \sf  \sqrt{x}  & \sf  \dfrac{1}{2 \sqrt{x} } \\ \\ \sf logx & \sf \dfrac{1}{x}\\ \\ \sf  {e}^{x}  & \sf  {e}^{x}  \end{array}} \\ \end{gathered}

Similar questions