Math, asked by guptaananya2005, 1 month ago

Only for moderators, stars and best users.

Spammers please far away.

Quality answer needed.

Differentiate with respect to x using first principal

f(x) =  {e}^{sin2x}

Class - 11

Topic - Differentiation ​

Answers

Answered by mathdude500
4

\large\underline{\sf{Solution-}}

Given function is

\rm :\longmapsto\:f(x) =  {e}^{sin2x}

So,

\rm :\longmapsto\:f(x + h) =  {e}^{sin2(x + h)} = {e}^{sin(2x + 2h)}

By using definition of First Principal, we have

\boxed{ \tt{ \: f'(x) = \displaystyle\lim_{h \to 0} \frac{f(x + h) - f(x)}{h} \:  \: }}

So, on substituting the values, we get

\rm :\longmapsto\:f'(x) = \displaystyle\lim_{h \to 0} \frac{{e}^{sin(2x + 2h)} - {e}^{sin2x}}{h}

\rm \:  =  \:\displaystyle\lim_{h \to 0} \frac{{e}^{sin2x}\bigg[{e}^{sin(2x + 2h) - sin2x} - 1\bigg]}{h}

\rm \:  =  \:\displaystyle\lim_{h \to 0} \frac{{e}^{sin2x}\bigg[{e}^{sin(2x + 2h) - sin2x} - 1\bigg]}{[sin(2x + 2h) - sin2x]h}  \times [sin(2x + 2h) - sin2x]

We know,

\boxed{ \tt{ \: \displaystyle\lim_{x \to 0} \frac{ {e}^{x}  - 1}{x} = 1 \: }}

So, using this identity, we get

\rm \:  =  \:{e}^{sin2x}\displaystyle\lim_{h \to 0} \frac{sin(2x + 2h) - sin2x}{h}

We know,

\boxed{ \tt{ \: sinx - siny = 2cos\bigg[\dfrac{x + y}{2} \bigg]sin\bigg[\dfrac{x - y}{2} \bigg] \: }}

So, using this, we have

\rm \:  =  \:{e}^{sin2x}\displaystyle\lim_{h \to 0} \frac{2cos\bigg[\dfrac{2x + 2h + 2x}{2} \bigg]sin\bigg[\dfrac{2x + 2h - 2x}{2} \bigg]}{h}

\rm \:  =  \:{e}^{sin2x}\displaystyle\lim_{h \to 0} \frac{2cos\bigg[\dfrac{4x + 2h}{2} \bigg]sin\bigg[\dfrac{2h}{2} \bigg]}{h}

\rm \:  =  \:{e}^{sin2x}\displaystyle\lim_{h \to 0} \frac{2cos\bigg[\dfrac{4x + 2h}{2} \bigg]sinh}{h}

\rm \:  =  \:2{e}^{sin2x}\displaystyle\lim_{h \to 0}cos\bigg[\dfrac{4x + 2h}{2} \bigg] \times \displaystyle\lim_{h \to 0} \frac{sinh}{h}

\rm \:  =  \:2{e}^{sin2x} \times cos2x \times 1

\rm \:  =  \:2cos2x \: {e}^{sin2x}

Hence,

\bf\implies \:\boxed{ \tt{ \: \dfrac{d}{dx}{e}^{sin2x} = 2cos2x \: {e}^{sin2x} \: }}

More to know :-

\begin{gathered}\boxed{\begin{array}{c|c} \bf f(x) & \bf \dfrac{d}{dx}f(x) \\ \\  \frac{\qquad \qquad}{} & \frac{\qquad \qquad}{} \\ \sf k & \sf 0 \\ \\ \sf sinx & \sf cosx \\ \\ \sf cosx & \sf  -  \: sinx \\ \\ \sf tanx & \sf  {sec}^{2}x \\ \\ \sf cotx & \sf  -  {cosec}^{2}x \\ \\ \sf secx & \sf secx \: tanx\\ \\ \sf cosecx & \sf  -  \: cosecx \: cotx\\ \\ \sf  \sqrt{x}  & \sf  \dfrac{1}{2 \sqrt{x} } \\ \\ \sf logx & \sf \dfrac{1}{x}\\ \\ \sf  {e}^{x}  & \sf  {e}^{x}  \end{array}} \\ \end{gathered}

Similar questions