Math, asked by iamdivyashjain, 19 days ago

Only genuine ans else u will be directly reported else get branliest!

Attachments:

Answers

Answered by MysticSohamS
2

Answer:

hey here is your solution

pls mark it as brainliest

Step-by-step explanation:

to \: prove \:  =  \\  \frac{sin \: 40 - sin \: 20}{cos \: 220 - cos \: 200}  =  \sqrt{3}  \\  \\ so \: let \\ LHS =  \frac{sin \: 40 - sin \: 20}{cos \: 220 - cos \: 200}  \\  \\ RHS =  \sqrt{3}

considering \: LHS \\  =  \frac{sin \: 40 - sin \: 20}{cos \: 220 - cos \: 200}  \\  \\  =  \frac{sin \: (30 + 10) - sin \: (30 - 10)}{cos \: (210 + 10) - cos \: (210 - 10)}  \\  \\  so \: here \:  \\ sin \: (30 + 10) \: \:  is \: in \: form \: sin \: (A + B ) \\ sin \: (30 - 10) \: is \: in \: form \: sin \: (A - B) \\ cos \: (210 + 10) \: is \: in \: form \: cos \: (A + B) \\ cos \: (210 - 10) \: is \: in \: form \: cos \: (A - B)

so \: we \: know \: that \\ sin \: (A + B) = sin \: A.cos \: B \:  + cos \: A.sin \: B \\  \\ sin \: (A - B) = sin \: A.cos \: B \:  -  \: cos \: A.sin \: B \\  \\ cos \: (A + B) = cos \: A.cos \: B \:  -  \: sin \: A.sin \: B \\  \\ cos \: (A - B) = cos \: A.cos \: B  +  sin \: A. sin \: B

hence \: accordingly \:  \\  =  \frac{sin \: 30.cos \: 10  \:   +   \: cos \:30.sin \: 10 \:  -  \: (sin \: 30.cos \: 10 \:  -  \: cos \: 30.sin \: 10) }{cos \: 210.cos \: 10 - sin \: 210.sin \: 10 \:  -  \: (cos \: 210.cos \: 10 \:  + sin \: 210.sin \: 10)}  \\  \\  =  \frac{sin \: 30.cos \: 10  + cos \: 30.sin \: 10- sin \: 30.cos \: 10 + cos \: 30.sin \: 10}{cos \: 210.cos \: 10 - sin \: 210.sin \: 10 - cos \: 210.cos \: 10 - sin \: 210.sin \: 10 }  \\  \\  =  \frac{cos \: 30.sin \: 10 + cos \: 30.sin \: 10}{ - sin \: 210.sin \: 10 - sin \: 210.sin \: 10}  \\  \\  =  \frac{2.cos \: 30.sin \: 10}{ - 2.sin \: 210.sin \: 10}  \\  \\  =  \frac{cos \: 30}{ - sin \: 210}  \\  \\ so \: sin \: 210 \: can \: be \: written \: as \: sin \: (270 - 60) \:  \\ ie \: sin \: ( \frac{3\pi}{2}  -  \frac{\pi}{3} ) \\  \\ so \: we \: know \: that \\ whenever \: there \: is \:  \frac{\pi}{2}  \: in \: any \: trigonometric \: ratio \\ then \: that \: ratio \: changes \: to \: its \: complementary \: ratio \\  \\ hence \: sin \: 210 = cos \: 60

so \: thus \: then \\ we \: know \: that \\ cos \: 30 =  \frac{ \sqrt{3} }{2}  \\  \\  =  \frac{ \frac{ \frac{ \sqrt{3} }{2} }{ - ( - 1)} }{2}  \\  \\  =  \frac{ \frac{ \frac{ \sqrt{3} }{2} }{1} }{2}  \\  \\  =  \sqrt{3}

hence \: LHS=RHS \\ thus \: proved

thus \: then  \\ we \: know \: that \:  \\ cos \: 60 =  \frac{1}{2}  \\  \\ but \: as \: 210 \: lies \: in \: quadrant \: 3 \\ we \: know \: that \: except \: tan \: and \: cot \: function \\ all \: others \: are \: negative \\  \\ hence \: cos \: 210 =  -  \frac{1}{2}  \\  \\

Similar questions