Math, asked by BotMod, 4 months ago

Only relevent answers needed​

Attachments:

Answers

Answered by manjugirish91
0

Answer:

the picture is not visible

Answered by MasterDhruva
4

Answer (1) :-

Value of 'x' :-

We know that, all the angles in the triangle together sum up to 180°. So, we can find the value of 'x' by following equation.

{\tt \longrightarrow x + 50^{\circ}  + 60^{\circ} = 180^{\circ}}

{\tt \longrightarrow x = 180 - (50 + 60)}

{\tt \longrightarrow x = 180 - 110}

{\tt \longrightarrow \orange{\boxed{\tt x = {70}^{\circ}}}}

Answer (2) :-

Value of 'x' :-

Here, angle P measures 90°. So, all sums up to 180°. So, we can find the answer by following equation.

{\tt \longrightarrow x + 30^{\circ}  + 90^{\circ} = 180^{\circ}}

{\tt \longrightarrow x = 180 - (90 + 30)}

{\tt \longrightarrow x = 180 - 120}

{\tt \longrightarrow \orange{\boxed{\tt x = {60}^{\circ}}}}

Answer (3) :-

Value of 'x' :-

Here, we know that all angles together measures 180°. So, we can find the answer by following equation.

{\tt \longrightarrow x + 110^{\circ}  + 30^{\circ} = 180^{\circ}}

{\tt \longrightarrow x = 180 - (110 + 30)}

{\tt \longrightarrow x = 180 - 140}

{\tt \longrightarrow \orange{\boxed{\tt x = {40}^{\circ}}}}

Answer (4) :-

Value of 'x' :-

Here, we know that all angles together measures 180°. So, we can find the answer by following equation.

{\tt \longrightarrow x + x + 50^{\circ} = 180^{\circ}}

{\tt \longrightarrow x + x = 180 - 50}

{\tt \longrightarrow 2x = 180 - 50}

{\tt \longrightarrow 2x = 130}

{\tt \longrightarrow x = \dfrac{130}{2} = \cancel \dfrac{130}{2}}

{\tt \longrightarrow \orange{\boxed{\tt x = {65}^{\circ}}}}

Answer (5) :-

Value of 'x' :-

Here, we know that all angles together measures 180°. So,we can easily find the value of x by following equation.

{\tt \longrightarrow x + x + x = 180^{\circ}}

{\tt \longrightarrow 3x = 180^{\circ}}

{\tt \longrightarrow x = \dfrac{180}{3} = \cancel \dfrac{180}{3}}

{\tt \longrightarrow \orange{\boxed{\tt x = {60}^{\circ}}}}

Answer (6) :-

Value of 'x' :-

Here, we know that all angles together measures 180°. So, we can find the value of'x'by following equation.

{\tt \longrightarrow 2x + x + {90}^{\circ} = 180^{\circ}}

{\tt \longrightarrow 3x = 180 - 90}

{\tt \longrightarrow 3x = 90}

{\tt \longrightarrow x = \dfrac{90}{3} = \cancel \dfrac{90}{3}}

{\tt \longrightarrow \orange{\boxed{\tt x = {30}^{\circ}}}}

Answer (7) :-

Here, we know that linear pair of angles together measures 180° and all the angles of triangle measures 180°.

Value of 'y' :-

{\tt \longrightarrow {120}^{\circ} + y = {180}^{\circ}}

{\tt \longrightarrow y = 180 - 120}

{\tt \longrightarrow \orange{\boxed{\tt y = {60}^{\circ}}}}

Value of 'x' :-

{\tt \longrightarrow {50}^{\circ} + {60}^{\circ} + x = {180}^{\circ}}

{\tt \longrightarrow x = 180 - (50 + 60)}

{\tt \longrightarrow x = 180 - 110}

{\tt \longrightarrow \orange{\boxed{\tt x = {70}^{\circ}}}}

Answer (8) :-

Here, we know that vertically opposite angles are always equal, and all the angles of the triangle together measures 180°.

Value of 'y' :-

{\tt \longrightarrow \orange{\boxed{\tt y = {80}^{\circ}}}(vertically \: opposite \: angles)}

Value of 'x' :-

{\tt \longrightarrow {50}^{\circ} + {80}^{\circ} + x = {180}^{\circ}}

{\tt \longrightarrow x = 180 - (50 + 80)}

{\tt \longrightarrow x = 180 - 130}

{\tt \longrightarrow \orange{\boxed{\tt x = {50}^{\circ}}}}

Answer (9) :-

Value of 'y' :-

Here, we know that all the angles of triangle measures 180° and linear pair of angles together measures 180°.

Value of 'y' :-

{\tt \longrightarrow {60}^{\circ} + {50}^{\circ} + y = {180}^{\circ}}

{\tt \longrightarrow y = 180 - (60 + 50)}

{\tt \longrightarrow y = 180 - 110}

{\tt \longrightarrow \orange{\boxed{\tt y = {70}^{\circ}}}}

Value of 'x' :-

{\tt \longrightarrow x + {70}^{\circ} = {180}^{\circ}}

{\tt \longrightarrow x = 180 - 70}

{\tt \longrightarrow \orange{\boxed{\tt x = {110}^{\circ}}}}

Similar questions