Math, asked by FLA, 1 year ago

ONLY STEP BY STEP ANSWER, NO FAKE ANSWER PLZ ​

Attachments:

Answers

Answered by Shubhashree16
1

Answer:

4, 8, 12

Step-by-step explanation:

Let the numbers be a-d, a, a+d

By given condition (a-d)+a+(a+d)=24

or 3a = 24

.°. a = 8

By second given condition

(a-d)²+a²+(a+d)²= 224

= (8-d)²+8²+(8+d)²=224

= 2(64+d²)= 224-64=160

=64+d=80=> d² = 16, d = ±4

.°. The required numbers are a-d=4, a=8, a+d=12

Answered by Grimmjow
10

Let the first term of the A.P be : a

Let the common difference of the A.P be : d

\longrightarrow  Second term of the A.P will be : a + d

\longrightarrow  Third term of the A.P will be : a + 2d

Given : Sum of first three terms of the A.P is 24

\longrightarrow  a + (a + d) + (a + 2d) = 24

\longrightarrow  3a + 3d = 24

\longrightarrow  3(a + d) = 24

\longrightarrow  a + d = 8

\longrightarrow  a = 8 - d

Given : Sum of squares of the first three terms of the A.P is 224

\longrightarrow  a² + (a + d)² + (a + 2d)² = 224

\longrightarrow  a² + a² + d² + 2ad + a² + 4d² + 4ad = 224

\longrightarrow  3a² + 5d² + 6ad = 224

Substituting the value of a = (8 - d) in the above equation, We get :

\longrightarrow  3(8 - d)² + 5d² + 6d(8 - d) = 224

\longrightarrow  3(64 + d² - 16d) + 5d² + 48d - 6d² = 224

\longrightarrow  192 + 3d² - 48d + 5d² + 48d - 6d² = 224

\longrightarrow  2d² = 224 - 192

\longrightarrow  2d² = 32

\longrightarrow  d² = 16

\longrightarrow  d = ± 4

Consider : d = 4

\longrightarrow  a = (8 - d) = (8 - 4) = 4

\longrightarrow  second term : (a + d) = (4 + 4) = 8

\longrightarrow  Third term : (a + 2d) = (4 + 8) = 12

In this case : The First three terms of the A.P are 4 , 8 , 12

Consider : d = -4

\longrightarrow  a = (8 - d) = (8 + 4) = 12

\longrightarrow  second term : (a + d) = (12 - 4) = 8

\longrightarrow  Third term : (a + 2d) = (12 - 8) = 4

In this case : The First three terms of the A.P are 12 , 8 , 4

Similar questions