ONLY STEP BY STEP ANSWER, NO FAKE ANSWER PLZ
Answers
Answer:
4, 8, 12
Step-by-step explanation:
Let the numbers be a-d, a, a+d
By given condition (a-d)+a+(a+d)=24
or 3a = 24
.°. a = 8
By second given condition
(a-d)²+a²+(a+d)²= 224
= (8-d)²+8²+(8+d)²=224
= 2(64+d²)= 224-64=160
=64+d=80=> d² = 16, d = ±4
.°. The required numbers are a-d=4, a=8, a+d=12
Let the first term of the A.P be : a
Let the common difference of the A.P be : d
Second term of the A.P will be : a + d
Third term of the A.P will be : a + 2d
Given : Sum of first three terms of the A.P is 24
a + (a + d) + (a + 2d) = 24
3a + 3d = 24
3(a + d) = 24
a + d = 8
a = 8 - d
Given : Sum of squares of the first three terms of the A.P is 224
a² + (a + d)² + (a + 2d)² = 224
a² + a² + d² + 2ad + a² + 4d² + 4ad = 224
3a² + 5d² + 6ad = 224
Substituting the value of a = (8 - d) in the above equation, We get :
3(8 - d)² + 5d² + 6d(8 - d) = 224
3(64 + d² - 16d) + 5d² + 48d - 6d² = 224
192 + 3d² - 48d + 5d² + 48d - 6d² = 224
2d² = 224 - 192
2d² = 32
d² = 16
d = ± 4
Consider : d = 4
a = (8 - d) = (8 - 4) = 4
second term : (a + d) = (4 + 4) = 8
Third term : (a + 2d) = (4 + 8) = 12
In this case : The First three terms of the A.P are 4 , 8 , 12
Consider : d = -4
a = (8 - d) = (8 + 4) = 12
second term : (a + d) = (12 - 4) = 8
Third term : (a + 2d) = (12 - 8) = 4
In this case : The First three terms of the A.P are 12 , 8 , 4