Math, asked by Aryanbaghla, 1 year ago

Only tell me the answer

Attachments:

Answers

Answered by rajsingh24
15

ANSWER:-

lt \: (x \: -> \: 0) =  \frac{cos {}^{2}  - sin {}^{2}x \:  - 1 }{ \sqrt{x {}^{2} + 1 - 1 } }  \\ lt \: (x \: -> \: 0) =   \frac{cos2x \:  - 1}{ \sqrt{x {}^{2}  + 1 }  - 1}

.°. cos\theta -1 / √1 -1 =0/0 Form.

L'HOSPITAL RULE,

lt \: (x \: -> \: 0) =  \:  \frac{ - sin2x \: (2) - 0}{ \frac{1}{ \cancel1 \sqrt{x {}^{2} + 1 \: . \cancel1x - 0} } }  \\ lt \: (x \: -> \: 0) =  \:  2(\frac{sin2x}{1x} ) \times ( \sqrt{x {}^{2} + 1 })  \times 1

.°. lt ( \theta -> 0) = sin\theta /\theta =1

lt \: (x \: -> \: 0) =   - 2 \times 1 \times   \sqrt{x {}^{2}  + 1}  \\ .°. \: lt \: (x \: -> \: 0) =  \: - 2 \times   \sqrt{0 + 1}  \\  .°. \: lt \: (x \: -> \: 0) =   \:  - 2 \times 1 \\  .°. \: lt \: (x \: -> \: 0) =  \red {- 2}

.°. So final answer is,

{\huge{\boxed{\tt{\red{-2}}}}}

Similar questions