Math, asked by XUVBOY0444, 9 months ago

ONLY THE BRAINLIEST CAN ANSWER THIS:

SOLVE:
 {( {2}^{ log_{5}(x)}  + 3)}^{ log_{5}2 }   = x - 3

Answers

Answered by aratrikabardhanvis7
1

Step-by-step explanation:

log3(x+5x+1)+log9(x+5)2=1

Solve it .

Solution :

\sf\frac{1}{2} log_{ \sqrt{3} }( \frac{x + 1}{x + 5} ) + log_{9}( {x + 5)}^{2} = 121log3(x+5x+1)+log9(x+5)2=1

\implies \sf \: \frac{1}{2} . \frac{ log( \frac{x + 1}{x + 5} ) }{ log( \sqrt{3}) } + \frac{ log( {x + 5)}^{2} }{ log(9) } = 1 \: \: [identity : \: log_{a}(b) = \frac{ log(b) }{ log(a) } ]⟹21.log(3)log(x+5x+1)+log(9)log(x+5)2=1[identity:loga(b)=log(a)log(b)]

\implies \sf \: \frac{1}{2} . \frac{ log( \frac{x + 1}{x + 5} ) }{ \frac{1}{2} log(3) } + \frac{2 log(x + 5) }{2 log(3) } = 1⟹21.21log(3)log(x+5x+1)+2log(3)2log(x+5)=1

\implies \sf \: \frac{ log( \frac{x + 1}{x + 5} ) }{ log(3) } + \frac{ log(x + 5) }{ log(3) } = 1⟹log(3)log(x+5x+1)+log(3)log(x+5)=1

\implies \sf \: log_{3}( \frac{x + 1}{x + 5} ) + log_{3}(x + 5) = 1 \: \: [identity : \frac{ log(b) }{ log(a) } = log_{a}(b) ]⟹log3(x+5x+1)+log3(x+5)=1[identity:log(a)log(b)=loga(b)]

\implies \sf \: log_{3}( \frac{x + 1}{x + 5} .( x + 5)) = 1 \: \: [identity : log_{a}(m) + log_{a}(n) = log_{a}(mn) ]⟹log3(x+5x+1.(x+5))=1[identity:loga(m)+loga(n)=loga(mn)]

\implies \sf \: log_{3}(x + 1) = 1⟹log3(x+1)=1

\implies \sf \: x + 1 = 3 \: \:[identity : log_{a}(b) = x \implies {a}^{x} = b]⟹x+1=3[identity:loga(b)=x⟹ax=b]

\implies \sf \: x = 3 - 1⟹x=3−1

\implies\sf{x=2}⟹x=2

Therefore, the value of x is 2.

Answered by singhrohit25032006
1

Step-by-step explanation:

Put all logarithms to one side:

3

log

5

x

log

5

(

5

x

)

+

log

5

25

=

3

log

5

25

can be rewritten as

log

25

log

5

=

2

log

5

log

5

=

2

log

5

x

3

log

5

(

5

x

)

+

2

=

3

log

5

x

3

log

5

5

x

=

1

log

5

(

x

3

5

x

)

=

1

x

2

5

=

5

1

x

2

=

25

x

=

±

5

The

5

solution is extraneous, since

log

5

(

a

x

)

, where

a

is a positive constant is only defined in the positive-x-values.

Hopefully this helps!

Similar questions