Math, asked by Amsusmita04, 8 months ago

only who knows the answer...

Attachments:

Answers

Answered by Delta13
1

Given:

 \tan \theta \:  =  \frac{8}{15}  \\

To show that,

 \sqrt{ \frac{1 - sin \theta}{1 + sin \theta} }  =  \frac{3}{5}  \\

Solution:

We know that

 \boxed{ \tan\theta =  \frac{Perpendicular}{Base} }

We are given that tan \theta =  \frac{8}{15}

On comparing

Perpendicular (P) = 8

Base (B) = 15

We can find the Hypotenuse(H) by using Pythagoras Theorem

 \boxed{H {}^{2}  =  {P}^{2}  +  {B}^{2}  } \\

 {H}^{2}  = (8) {}^{2}  +  {(15)}^{2}  \\ h {}^{2}  = 64 + 225 \\   {H}^{2}  = 289 \\ H =  \sqrt{289}  \\ H = 17 \\ Hypotenuse (H) = 17

 \boxed {sin \theta =  \frac{Perpendicular}{Hypotenuse} } \\

So, sin \theta =  \frac{8}{17}  \\

We can solve it by two ways,

  • First by putting the values

 \sqrt{ \frac{1 - sin \theta}{1 + sin \theta} }  \\

 =  >  \large {\sqrt{ \frac{1 -  \frac{8}{17} }{1 +  \frac{8}{17} } }}  \\  \\  =  >   \large{\sqrt{ \frac{ \frac{17 - 8}{17} }{ \frac{17 + 8}{17} } }}  \\  \\  =  >   \large{\sqrt{  \frac{ \frac{9}{17} }{ \frac{25}{17} }}  }  \\  \\  =  >  \large{ \sqrt{ \frac{ \frac{9}{ \cancel{17}} }{ \frac{25}{ \cancel{17}} } } } \\  \\  =  >  \sqrt{ \frac{9}{25} }  \green{=  \frac{3}{5} }  \\  \\  \texttt{We  know that } \sqrt{9}  = 3 \\  \texttt{and} \sqrt{25}  = 5 \\  \\   \blue{\implies  \sqrt{ \frac{1 - sin  \theta}{1 + sin  \theta}  }  =  \frac{3}{5} }

__________________________

  • Second by simplifying

 \sqrt{ \frac{1 - sin \theta}{1 + sin \theta} }  \\

Multiplying numerator and denominator by (1 -  \sin \theta)

 \implies \:  \sqrt{ \frac{1 -  \sin \theta \times (1 -  \sin \theta) }{1 +  \sin \theta \times (1 -  \sin \theta) } }  \\  \\  =  >  \sqrt{ \frac{(1 -  \sin \theta) {}^{2}  }{( {1}) ^{2} - ( \sin \theta) {}^{2}   } }  \\  \\  =  >  \sqrt{ \frac{(1 -  \sin \theta) {}^{2}  }{1 -  { \sin }^{2} \theta } }

We know that

(a+b)(a-b) = a²-b²

Using identity

\sin  {}^{2} \theta+ \cos {}^{2}  \theta = 1 \\  \therefore \\    \cos {}^{2}  \theta = 1 -  { \sin }^{2}  \theta

 \implies \:  \sqrt{ \frac{(1 -  \sin \theta) {}^{2} }  {\cos {}^{2}  \theta}  } \:   \\  \\   \implies \:   \sqrt{  {\left(\frac{1 -  \sin \theta} {cos \theta} \right)} ^{2}     }   \\  \\   \implies  \frac{1 -  \sin \theta }{cos \theta}   \\  \\ = =  >   \frac{1}{ \cos \theta}  -  \frac{ \sin \theta }{ \cos \theta}   \\  \\  \left(\because \:  \frac{1}{ \cos \theta  }  =  \sec \theta  \right)  \texttt{and}  \\   \\  \left( \frac{ \sin \theta }{ \cos \theta } =    \tan  \theta  \right)\\   \\ \large = \underline{ \sec \theta -  \tan \theta }\:  \: .....(1) \\

Now we have

 \red{\tan \theta =  \frac{8}{15} } \\

and we know that

 \boxed{ \sec \theta =  \frac{Hypotenuse}{Base}}  \\  \\ \red{ \implies \sec \theta =  \frac{17}{15} }

Now we will substitute the values in (1)

 =  >  \frac{17}{15}  -  \frac{8}{15}  \\  \\  =  >  \frac{9}{15}     \:  \:  \:  \:    \green{ = \frac{3}{5} } \\  \\   \\   \blue{\implies { \sqrt{ \frac{1 -  \sin \theta}{1 +  \sin \theta} } } =  \frac{3}{5} }

Answered by XxxXXJAYXXxxX
0

Answer:

FOLLOW ME FOR MORE CORRECT ANSWER AND INBOX. MARK AS BRAINLIEST

Attachments:
Similar questions