Math, asked by tigerman67, 1 year ago

oooooooooooo..............

Attachments:

Answers

Answered by MarkAsBrainliest
0
\textbf{Answer :}

Now,

∫ x^2 sin2x dx

= x^2 ∫ sin2x dx -
∫ { d/dx (x²) × ∫ sin2x dx } dx + c,

where c is integral constant

= - 1/2 x² cos2x -
∫ { 2x (- 1/2) cos2x } dx + c

= - 1/2 x² cos2x + ∫ x cos2x dx + c

= - 1/2 x² cos2x + x ∫ cos2x dx -
∫ { d/dx (x) × ∫ cos2x dx } dx + c

= - 1/2 x² cos2x + 1/2 x sin2x
- 1/2 ∫ sin2x dx + c

= - 1/2 x² cos2x + 1/2 x sin2x
- 1/2 ( - 1/2 cos2x ) + c

= - 1/2 x² cos2x + 1/2 x sin2x + 1/4 cos2x + c,

which is the required solution.

Therefore, \textbf{Option (b)} is correct.

#\bold{MarkAsBrainliest}

Harry098: Hi
Answered by Avikshiti
0

Answer:

oooooooooooooooo... is which type of question

Similar questions