Math, asked by nehakumari4210, 6 months ago

Open area of a house is in the shape of a trapezium with parallel sides in the ratio 3:5. Its area is
50 m2 and the perpendicular distance between the parallel sides is 5 metres. Find the length of two
parallel sides of that open area.​

Answers

Answered by HNChaudhari
2

Answer:

ANSWER

Let the parallel sides be 3x and 5x

Area of trap=21×Sum of parallel sides×h

So, 50=21×(3x+5x)×5

⇒50=4x×5

⇒x=2050=2.5

So, the first side=3x=3×2.5=7.5m

and the second side is =5x=5×2.5=12.5m

Answered by Berseria
12

Question :

To find length of parallel sides of an open area in shape of a trapezium.

Answer :

Given :

  • Ratio of parallel sides = 3:5

  • Area of trapezium = 50 m²

  • Perpendicular distance = 5 m

Let's do ::

{\underline{\boxed{\bf{area \: of \: trapezium \:  =  \frac{1}{2} \times (a + b) \times h }}}}

  • a and b are parallel sides
  • h is the perpendicular distance.

Let, parallel sides be x, 3x and 5x

\longrightarrow\sf \:  \frac{1}{2}(a + b) \times h = 50 \\  \\ \longrightarrow\sf \:  \frac{1}{2}  (3x + 5x) \times 5 = 50 \\  \\ \longrightarrow \sf  \frac{1}{2} \times  8x \times 5 = 50 \\  \\ \sf\longrightarrow \: 4x  \: \times 5 = 50 \\  \\ \longrightarrow\sf \: 4x =  \frac{50}{5}  \\  \\ \sf\longrightarrow \: 4x = 10 \\  \\ \sf\longrightarrow \: x =  \frac{10}{4}  \\  \\ \longrightarrow\bf \: x \:  = 2.5

So, X is 2.5 m.

Now , let's find the parallel sides :

\sf➝ \: 3x \\  \\ ➝\sf \: 3 \times 2.5 \\  \\ ➝\bf \: 7.5

\sf➝ \: 5x \\  \\ \sf➝ \: 5 \times 2.5 \\  \\ \bf \: ➝ \: 12.5

The sides are 7.5 and 12.5.

Let's verify ::

\sf \:  =  >  \frac{1}{2} (a \:  + b) \times h \:  = 50

 =  > \sf \:  \frac{1}{2}  \times (7.5 + 12.5) \times 5 = 50

 =  > \sf \:  \frac{1}{2}  \times 20 \times 5 = 50

 =  > \sf \:  \frac{1}{2}  \times 100 = 50

\sf  =  > \: 50 = 50

\bf \: LHS \:  =  \: RHS \:

Thus Solved !!

Attachments:
Similar questions