Math, asked by 369333, 11 months ago

Open challenge......... ​

Attachments:

Answers

Answered by BrainlyPopularman
16

QUESTION :

If y =  \frac{1}{ \sqrt{x} }  +  \frac{2}{ {x}^{ \frac{3}{2} } }  -  \frac{4}{ {x}^{ \frac{5}{2} } } then find \frac{dy}{dx} \\

ANSWER :

GIVEN :

A function y =  \frac{1}{ \sqrt{x} }  +  \frac{2}{ {x}^{ \frac{3}{2} } }  -  \frac{4}{ {x}^{ \frac{5}{2} } } \\

TO FIND :

\frac{dy}{dx}  = ? \\

SOLUTION :

Given function

 \\  y = \frac{1}{ \sqrt{x} }  +  \frac{2}{ {x}^{ \frac{3}{2} } }  -  \frac{4}{ {x}^{ \frac{5}{2} } } \\ \\

We should write this as –

 \\ \implies y =  {x}^{ -  \frac{1}{2} }  + 2 {x}^{ -  \frac{3}{2} }  - 4 {x}^{ -  \frac{5}{2}} \\

• Now Differentiate with respect to 'x'

 \\ \implies \frac{dy}{dx} =  -  \frac{1}{2}  {x}^{ -  \frac{3}{2} }  + 2( -  \frac{3}{2} ) {x}^{ -  \frac{5}{2} }  - 4( -  \frac{5}{2} ) {x}^{ -  \frac{7}{2} } \\

  \\ \implies \frac{dy}{dx} =  -  \frac{1}{2}  {x}^{ -  \frac{3}{2} }  - 3 {x}^{ -  \frac{5}{2} }  + 10 {x}^{ -  \frac{7}{2} } \\ \\

Used formula :

 \\ (1) \frac{d({x}^{n})}{dx} = n {x}^{n - 1}

Similar questions