Opposite angles of a parllelogram are(2x-3)and(45-x) find the value of x
Answers
Answered by
20
Answer:
x = 16
Explanation:
It is given that,
Opposite angles of a
parallelogram are (2x-3)
and (45-x)
______________________
We know that,
In a parallelogram opposite
angles are equal.
______________________
2x-3 = 45-x
=> 2x + x = 45 + 3
=> 3x = 48
=> x = 48/3
=> x = 16
Therefore,
The value of x = 16
••••
Answered by
5
Parallelogram (2x - 3) and (45-x)
Opposite side of parallelogram angles are equal.
Substitute in an Equation
⇒ 2x - 3 = 45 - x
⇒ 2x + x = 45 + 3
⇒ 3x = 48
⇒ x = 16
Hence
Similar questions