OPQ is the sector of a circle having
centre at 0 and radius 15 cm. If
m<POQ = 30°, find the area enclosed
by arc PQ and chord PQ.
Answers
clearly OP and OQ are radii
OP = OQ = 15 cm
<POQ = 30°
thus
<OPQ = <OQP = (180-30)/2 = 75°
let distance between centre O and chord PQ is OM
in ∆ OMP
sin 75° = OM/OP
sin (45 + 30) = OM/OP
sin 45 cos 30 + cos 45 sin 30 = OM/OP
√3/(2√2) + 1/(2√2) = OM/15
(√3 + 1)/(2√2) = OM/15
OM = 15 (√3 + 1)/(2√2)
again
cos 75° = MP/OP
cos (45 + 30) = MP/OP
cos 45 cos 30 - sin 45 sin 30 = MP/15
√3/(2√2) - 1/(2√2) = MP/15
(√3 - 1)/(2√2) = MP/15
MP = 15 (√3 - 1)/(2√2)
PQ = 2* MP
= 30 (√3 - 1)/(2√2)
area of ∆ OPQ = (1/2)*OM*PQ
= (1/2)*15(√3+1)/(2√2)*30(√3-1)/(2√2)
= 225 (3 - 1)/8
= 225/4 sq cm
area of arc = πr^2 30°/360°
= (22/7)*15^2*(1/6)
= (22/7)*225*(1/6)
= 825/7 sq cm
area between arc and chord
= 825/7 - 225/4
= (825*4 - 225*7)/28
= ( 3300 - 1575 ) / 28
= 1725/28 sq cm