OPQ is the sector of the circle having centre at O and radius 15 cm .If measure angle POQ ia equal to 30 degree find the area enclosed by arc PQ and Chord PQ
Answers
Answer:
The required area is 2.68 square cm.
Step-by-step explanation:
Area of sector POQ
Area of triangle POQ
The area enclosed by arc PQ and Chord PQ
=Area of sector POQ-Area of triangle POQ
Step-by-step explanation:
The required area is 2.68 square cm.
Step-by-step explanation:
Area of sector POQ
=\frac{\theta}{360}*\pi\:r^2=
360
θ
∗πr
2
=\frac{30}{360}*\frac{22}{7}*15*15=
360
30
∗
7
22
∗15∗15
=\frac{1}{12}*\frac{22}{7}*225=
12
1
∗
7
22
∗225
=\frac{1}{6}*\frac{11}{7}*225=
6
1
∗
7
11
∗225
=\frac{2475}{42}\:cm^2=
42
2475
cm
2
Area of triangle POQ
=\frac{1}{2}*a*b*sinC=
2
1
∗a∗b∗sinC
=\frac{1}{2}*r*r*sin30=
2
1
∗r∗r∗sin30
=\frac{1}{2}*15*15*\frac{1}{2}=
2
1
∗15∗15∗
2
1
=\frac{225}{4}=
4
225
The area enclosed by arc PQ and Chord PQ
=Area of sector POQ-Area of triangle POQ
=\frac{2475}{42}-\frac{225}{4}=
42
2475
−
4
225
=\frac{4950}{84}-\frac{4725}{84}=
84
4950
−
84
4725
=\frac{4950-4725}{84}=
84
4950−4725
=\frac{225}{84}=
84
225
=2.68\:cm^2=2.68cm
2