Math, asked by dakshsingh24, 2 months ago

Options:-
1) 0.1718
2) 5.8282
3) 0.4142
4) 2.4142
5) None of the above​

Attachments:

Answers

Answered by varshitha957gmailcom
2

Answer:

so here. 1/3 is your answer

Attachments:
Answered by ExElegant
7

\: \: \: \: \: \: \: \: \: \rm{\red{option \: \: (3)}}

Step-by-step explanation:

━━━━━━━━━━━━━━━━━━━━━━━━

Given :-

\: \: \: \: \: \: \: \: \: \: \: \: \: \: \: \:  \rm{\blue{\sqrt{2} \: \: = \: \: 1.4142} \: \: -\pink{(1)}}

━━━━━━━━━━━━━━━━━━━━━━━━

Solution :-

\: \: \: \: \: \: \: \: \: \: \: \: \: \: \: \: \: \:  \rm{\sqrt{\green{\dfrac{\sqrt{2} - 1}{\sqrt{2} + 1}}}}

from rationalising the denominators

\: \: \: \: \: \: \: \: \: \: \:  \rm{\sqrt{\dfrac{(\sqrt{2} - 1)}{(\sqrt{2} + 1)} \times \dfrac{(\sqrt{2} - 1)}{(\sqrt{2} - 1)}}}

\: \: \: \: \: \: \: \: \:  \rm{\sqrt{\dfrac{(\sqrt{2} - 1)^{2}}{(\sqrt{2} + 1)(\sqrt{2} - 1)}}}

from algebraic property -

\: \: \: \: \: \: \: \: \: \: \: \: \:  \rm{\boxed{\blue{(a + b)(a - b) \: \: = \: \: (a^{2} - b^{2})}}}

on using this property

\: \: \: \: \: \: \: \: \: \: \:  \rm{\sqrt{\dfrac{(\sqrt{2} - 1)^{2}}{(\sqrt{2})^{2} - (1)^{2}}}}

\: \: \: \: \: \: \: \: \: \: \: \rm{\sqrt{\dfrac{(\sqrt{2} - 1)^{2}}{2 - 1}}}

\: \: \: \: \: \: \: \: \: \: \: \rm{\sqrt{\dfrac{(\sqrt{2} - 1)^{2}}{1}}}

\: \: \: \: \: \: \: \: \: \: \: \rm{\sqrt{(\sqrt{2} - 1)^{2}}}

\: \: \: \: \: \: \: \: \: \: \: \: \: \: \: \rm{(\sqrt{2} - 1)}

putting value from eqⁿ(1) -

\: \: \: \: \: \: \: \: \: \: \: \: \rm{1.4142 - 1}

\: \: \: \: \: \: \: \: \: \: \: \: \: \: \:  \rm{\pink{0.4142}}

━━━━━━━━━━━━━━━━━━━━━━━━━━

Similar questions