Math, asked by Mɪʀᴀᴄʟᴇʀʙ, 4 months ago

Options are:
(A) 1

(B) 2√2 - 1

(C) \dfrac{\sqrt {5}}{2}

(D) \dfrac{2}{\sqrt {\sqrt {5} + 1}}

[ Give full explanation. ]​

Attachments:

Answers

Answered by anindyaadhikari13
19

Required Answer:-

Given:

 \rm \mapsto N =  \dfrac{ \sqrt{ \sqrt{5} + 2 } +  \sqrt{ \sqrt{5} - 2 }  }{ \sqrt{ \sqrt{5} + 1 } }  -  \sqrt{3 - 2 \sqrt{2} }

To find:

  • The value of N.

Solution:

Let us assume that,

 \rm \bigstar  \: x =   \dfrac{ \sqrt{ \sqrt{5} + 2 } +  \sqrt{ \sqrt{5} - 2 }  }{ \sqrt{ \sqrt{5} + 1 } }

 \rm \bigstar  \: y =  \sqrt{3 - 2 \sqrt{2} }

So,

  \rm \implies N = x + y

Solve for x.

We have,

 \rm x =   \dfrac{ \sqrt{ \sqrt{5} + 2 } +  \sqrt{ \sqrt{5} - 2 }  }{ \sqrt{ \sqrt{5} + 1 } }

 \rm =  \dfrac{( \sqrt{ \sqrt{5} + 2 } +  \sqrt{ \sqrt{5} - 2 }  )( \sqrt{ \sqrt{5}  - 1} )}{ (\sqrt{ \sqrt{5} + 1 } )( \sqrt{ \sqrt{5} - 1 } )}

 \rm =  \dfrac{( \sqrt{ \sqrt{5} + 2 } +  \sqrt{ \sqrt{5} - 2 }  )( \sqrt{ \sqrt{5}  - 1} )}{ \sqrt{ (\sqrt{5} + 1  )( \sqrt{5}  - 1)}}

 \rm =  \dfrac{( \sqrt{ \sqrt{5} + 2 } +  \sqrt{ \sqrt{5} - 2 }  )( \sqrt{ \sqrt{5}  - 1} )}{ \sqrt{5 - 1}}

 \rm =  \dfrac{( \sqrt{ \sqrt{5} + 2 } +  \sqrt{ \sqrt{5} - 2 }  )( \sqrt{ \sqrt{5}  - 1} )}{ \sqrt{4}}

 \rm =  \dfrac{( \sqrt{ \sqrt{5} + 2 } +  \sqrt{ \sqrt{5} - 2 }  )( \sqrt{ \sqrt{5}  - 1} )}{2}

 \rm =  \dfrac{( \sqrt{ \sqrt{5} + 2 } )( \sqrt{ \sqrt{5}  - 1} )+  (\sqrt{ \sqrt{5} - 2 }  )( \sqrt{ \sqrt{5}  - 1} )}{2}

 \rm =  \dfrac{\sqrt{ (\sqrt{5} + 2) ( \sqrt{5}  - 1)} +  \sqrt{( \sqrt{5} - 2)( \sqrt{5}  - 1) } }{2}

 \rm =  \dfrac{\sqrt{ 5 -  \sqrt{5}  + 2 \sqrt{5}  - 2} +  \sqrt{5 -  \sqrt{5} - 2 \sqrt{5} + 2 } }{2}

 \rm =  \dfrac{\sqrt{ 3 +  \sqrt{5}} +  \sqrt{7 -  3\sqrt{5} } }{2}

 \rm =  \dfrac{\sqrt{ \dfrac{ 3 +  \sqrt{5}}{2} \times 2} +  \sqrt{ \dfrac{7 -  3\sqrt{5} }{2}} \times 2 }{2}

 \rm =  \dfrac{\sqrt{ \dfrac{ 6 +  2\sqrt{5}}{2}} +  \sqrt{ \dfrac{14 -  6\sqrt{5} }{2}} }{2}

 \rm =  \dfrac{ \dfrac{1}{ \sqrt{2} } \times  \bigg( \sqrt{6 +  2\sqrt{5}} +  \sqrt{14 -  6\sqrt{5}}  \bigg)}{2}

 \rm =  \dfrac{  \sqrt{6 +  2\sqrt{5}} +  \sqrt{14 -  6\sqrt{5}} }{2 \sqrt{2} }

 \rm =  \dfrac{  \sqrt{1 + 5+  2\sqrt{5}} +  \sqrt{9 + 5 -  6\sqrt{5}} }{2 \sqrt{2} }

 \rm =  \dfrac{  \sqrt{ {(1)}^{2} +  {( \sqrt{5} )}^{2} +  2 \times 1 \times \sqrt{5}} +  \sqrt{{(3)}^{2}  +  {( \sqrt{5} )}^{2} -  2 \times 3 \times \sqrt{5}} }{2 \sqrt{2} }

 \rm =  \dfrac{  \sqrt{ {( 1 + \sqrt{5})}^{2} } +  \sqrt{{( 3 - \sqrt{5} )}^{2}} }{2 \sqrt{2} }

 \rm =  \dfrac{  {( 1 + \sqrt{5} )}+ ( 3 - \sqrt{5} ) }{2 \sqrt{2} }

 \rm =  \dfrac{4}{2 \sqrt{2} }

 \rm =  \dfrac{2}{ \sqrt{2} }

 \rm =  \sqrt{2}

So,

 \rm \implies x = \sqrt{2}

Now, solve for y.

We have,

 \rm  y =  \sqrt{3 - 2 \sqrt{2} }

 \rm =  \sqrt{1 + 2 - 2 \sqrt{2} }

 \rm =  \sqrt{ {(1)}^{2}  +  {( \sqrt{2}) }^{2} - 2 \times 1 \times  \sqrt{2}  }

 \rm =  \sqrt{ {(1 -  \sqrt{2} )}^{2} }

 \rm = 1 -  \sqrt{2}

So,

 \rm \implies y = 1 -  \sqrt{2}

Therefore,

 \rm  \implies N = x + y

 \rm  \implies N = \sqrt{2}  + 1 -  \sqrt{2}

 \rm  \implies N =1

Hence, the value of N is 1.

So, Option A is the correct answer for this question.

Answer:

  • The value of N is 1(Option A)
Answered by GraceS
1

\tt\huge\purple{hello!!!}

HERE IS UR ANSWER

_____________________________

option a) is correct

the value of N is 1.

Similar questions