Or
1f cos 0 + sin () = v2 cos 0 then show that cos 0) – sin 0 = V2 sin e
Answers
Answered by
6
Given
1f cos 0 + sin () = v2 cos 0 then show that cos 0) – sin 0 = V2 sin e
Answer
Cosθ - Sinθ = √2 Sinθ if Cosθ + Sinθ = √2 Cosθ
Step-by-step explanation:
Cosθ + Sinθ = √2 Cosθ
Squaring both sides
=> Cos²θ + Sin²θ + 2CosθSinθ = 2Cos²θ
=> 2CosθSinθ = Cos²θ - Sin²θ
Cos² + Sin²θ = 1
Subtracting 2CosθSinθ from both sides
=> Cos² + Sin²θ - 2CosθSinθ = 1 - 2CosθSinθ
=> (Cosθ - Sinθ)² = 1 - 2CosθSinθ
using 2CosθSinθ = Cos²θ - Sin²θ
=> (Cosθ - Sinθ)² = 1 - (Cos²θ - Sin²θ)
=> (Cosθ - Sinθ)² = 1 - Cos²θ + Sin²θ
=> (Cosθ - Sinθ)² = Sin²θ + Sin²θ
=> (Cosθ - Sinθ)² = 2Sin²θ
=> Cosθ - Sinθ = √2 Sinθ
QED
Proved
Attachments:
Answered by
0
Answer:
Check your answer please
Attachments:
Similar questions
English,
1 month ago
History,
1 month ago
Hindi,
4 months ago
Social Sciences,
10 months ago
Social Sciences,
10 months ago
English,
10 months ago