Math, asked by Anonymous, 4 months ago

(OR)
) Find the co-ordinates of the points of trisection of the line segment joining the points
3, 3) and (3, – 3)


iiii287: fallow to karo bebs
iiii287: ok
iiii287: tell
Anonymous: britishcoedian in my following
iiii287: can she show me
Anonymous: pta nhi puchlo us se
iiii287: ok
iiii287: byy
Anonymous: byee
Amandost235: hello

Answers

Answered by Truptibosmiya
2

Answer:

Using the section formula, if a point (x,y) divides the line joining the points (x1,y1) and (x2,y2) in the ratio m:n, then 

(x,y)=(m+nmx2+nx1,m+nmy2+ny1)

Let P (x1,y1) and Q (x2,y2) are the points of trisection of the line segment joining the given points i.e., AP = PQ = QB

Therefore, point P divides AB internally in the ratio 1:2.

x1 = 1+21(3)+2(−3)

y1 = 1+21(−3)+2(3)

x1 = 33−6=−1

y1 = 3−3+6=1

Therefore, p(x1

hope it help you

Similar questions