OR
Prove that (Sin A+ CosecA)? +(CosA+Sec A) = 7+ Tan’A+Cot'A
7197
Tid
Answers
Answered by
0
Step-by-step explanation:
Correct Question :-
Prove that ( Sin A+ Cosec A)^2+(Cos A + Sec A)^2 = 7+ Tan^2 A + Cot^2 A
Solution:-
LHS:-
( Sin A+ Cosec A)^2+(Cos A + Sec A)^2
We know that
(a+b)^2 = a^2+2ab+b^2
=> Sin^2 A+ 2 Sin A Cosec A+ Cosec^2 A+ Cos^2A+ Sec^2 A+ 2 Cos A Sec A
We know that
Sec A = 1/ Cos A
Sec A Cos A = 1
Cosec A = 1/ Sin A
Cosec A Sin A = 1
=> Sin^2 A+ Cosec^2 A + 2+Cos^2 A+ Sec^2 A+2
=>Sin^2 A+ Cosec^2 A +Cos^2 A+ Sec^2 A + 4
=> (Sin^2 A+ Cos^2 A)+Cosec^2 A + Sec^2 A+4
We know that
Sin^2 A+ Cos^2 A = 1
=> 1 + Cosec^2 A + Sec^2 Ab+4
=> 5 + Cosec^2 A + Sec^2 A
We know that
Sec^2 A - Tan^2 A = 1
Cosec^2 A - Cot^2 A = 1
=> 5 + 1+Tan^2 A + 1 + Cot^2 A
=> 7 + Tan^2 A + Cot^2 A
=> RHS
LHS = RHS
Hence, Proved.
Used formulae:-
- (a+b)^2 = a^2+2ab+b^2
- Sec A = 1/ Cos A
- Sec A Cos A = 1
- Cosec A = 1/ Sin A
- Cosec A Sin A = 1
- Sec^2 A - Tan^2 A = 1
- Cosec^2 A - Cot^2 A = 1
Similar questions