Math, asked by aliyafatima17, 11 months ago

OR
Solve y" +4y = cos x cos 3x.​

Answers

Answered by MaheswariS
16

\textbf{Given:}

y"+4y=cosx\;cos3x

y"+4y=\displaystyle\frac{1}{2}[2\;cosx\;cos3x]

y"+4y=\displaystyle\frac{1}{2}[cos(x+3x)+cos(x-3x)]

y"+4y=\displaystyle\frac{1}{2}[cos4x+cos2x]

\text{Characteristic equation is}

p^2+4=0

p^2=-4

p^2=4i^2

p=\pm\,2i

\textbf{Complementary function is}

e^{0x}[A\;cos2x+B\;sin2x]

A\;cos2x+B\;sin2x

\textbf{Particular integral-1}

=\displaystyle\frac{1}{2}(\frac{cos4x}{D^2+4})

=\displaystyle\frac{1}{2}(\frac{cos4x}{D^2+4})

=\displaystyle\frac{1}{2}(\frac{cos4x}{-16+4})

=\displaystyle\frac{cos4x}{-24}

\textbf{Particular integral-2}

=\displaystyle\frac{1}{2}(\frac{cos2x}{D^2+4})

=\displaystyle\frac{1}{2}(\frac{sin2x}{4})

=\displaystyle\frac{sin2x}{8}

\therefore\textbf{The general solution is}

\text{y=Complementary function+Particular integral}

\bf\;y=\displaystyle\;A\;cos2x+B\;sin2x-\frac{cos4x}{24}+\frac{sin2x}{8}

Similar questions