Math, asked by keerthi577, 5 months ago

order linear differential equation-solve (d⁴-2d³+2d²-2d+1) y=0​

Answers

Answered by MaheswariS
1

\underline{\textbf{Given:}}

\textsf{Differential equation is}

\mathsf{(D^4-2D^3+2D^2-2D+1)y=0}

\underline{\textbf{To find:}}

\textsf{Solution of the given D.E}

\underline{\textbf{Solution:}}

\mathsf{Consider,}

\mathsf{(D^4-2D^3+2D^2-2D+1)y=0}

\mathsf{Characteristic\;equation\;is}

\mathsf{m^4-2m^3+2m^2-2m+1=0}

\mathsf{(m^4-2m^3+m^2)+(m^2-2m+1)=0}

\mathsf{m^2(m^2-2m+1)+1(m^2-2m+1)=0}

\mathsf{(m^2+1)(m^2-2m+1)=0}

\mathsf{(m^2+1)(m-1)^2=0}

\mathsf{m^2+1=0\implies\,m^2=-1\implies\,m^2=i^2\implies\,m=\pm\,i}

\mathsf{(m-1)^2=0\implies\,m=1,1}

\therefore\mathsf{The\;roots\;are\;1,1,i,-i}

\mathsf{Solution\;is}

\mathsf{y=(Ax+B)e^{m\,x}+e^{\alpha\,x}[C\,cos\beta\,x+D\,sin\beta\,x]}

\mathsf{y=(Ax+B)e^{(1)x}+e^{(0)x}[C\,cos(1)x+D\,sin(1)x]}

\mathsf{y=(Ax+B)e^x+e^0[C\,cosx+D\,sinx]}

\implies\boxed{\mathsf{y=(Ax+B)e^x+C\,cosx+D\,sinx}}

\underline{\textbf{Find more:}}

The complementary function of (D2 + 169)y = 0 isa. Acos 12x + Bsin 12x

b. A cos 13x + B sin 13x

C. A cos 15x + B sin 15x

d.Acos 25x + Bsin 25x

https://brainly.in/question/36564867

Similar questions