Math, asked by mandalgaurav177, 4 months ago

origin
PA=PB and the coordinates of point A
B are (2,0) and (-2,4) respectively
and if P lies on the y axis then calculate
e coordinates of point P.​

Answers

Answered by LaeeqAhmed
3

\color{red}\huge{\underline{\underline{GIVEN\dag}}}

  • A(2,0)
  • B(-2,4)
  • PA=PB

\color{red}\huge{\underline{\underline{TO\:FIND\dag}}}

  • P(x,y)
  • Since 'P' lies on y axis,x-coordinate of 'P' is 0
  • P(0,y)

\color{red}\huge{\underline{\underline{SOLUTION\dag}}}

PA=PB

{(0-2)}^{2}+{(y-0)}^{2}={(0+2)}^{2}+{(y-4)}^{2}

{(-2)}^{2}+{(y)}^{2}={(2)}^{2}+{(y-4)}^{2}

4 +  {y}^{2}  = 4 +  {y}^{2}  - 8y + 16

8y = 16

 \therefore y = 2

Therefore,the co-ordinates of 'P' is,

 \orange{ \boxed{P(0,2)}}

HOPE THAT HELPS!!

Answered by Yugant1913
13

Step-by-step explanation:

GIVEN

  • A ( 2, 0).
  • B ( - 2,4)
  • PA = PB

TO \:  \: FIND

  • P (x, y).
  • Since ' P' line on Y axis x - coordinate of ' P' is 0
  • P ( 0, y )

SOLUTION

PA = PB

⟾( {0 - 2)}^{2}  +  {(y - 0)}^{2}  = ( {0 + 2)}^{2}  + (y -  {4)}^{2}

⟾ {( - 2)}^{2}   + ( {y)}^{2}  =  {(2)}^{2}  +  {(y - 4)}^{2}

⟾4 +  {y}^{2}  = 4 +  {y}^{2}  - 8y + 16

⟾8y = 16

⟾y =  \frac{16}{8}

∴ \:  \:  \: y = 2

Therefore, the co- ordinates of ' p' is P ( 0, 2)

Similar questions