Os. No: 7(b)
Find a2+b2+c2 if a+b+c= 20 and ab+bc+ca=71.
Answers
Answered by
0
Answer:
(a + b + c)2 = a2 +b2 + c2 + 2ab + 2bc + 2ca. ⇒ (a + b + c)2 = 83 + 2(ab + bc + ca). ⇒ (a + b + c)2 = 83 + 2 × 71. ⇒ (a + b + c)2 = 83 + 142.
Answered by
0
Answer:
there is one identity
(a+b+c)^2=a^2+b^2+c^2+2(ab+bc+ca)
a^2+b^2+c^2=(a+b+c)^2-2(ab+bc+ca)
=(20)^2-2*71
=400-142
=258
Similar questions