(osA
/1 +sin A
)+(1+ inA
/cos A)
=
(A) 2CosecA
(B) 2 CosA
(C) 2 SecA
(D) 2 SinA
Answers
Answered by
0
Answer:
Hi !
Let us start with the LHS
LHS = 1 + cosA/sinA + sinA / 1+ cosA
here , LCM = sinA(1+ cosA)
= \frac{(1+cosA) ^{2} + (sinA) ^{2} }{sinA(1 + cosA)}=
sinA(1+cosA)
(1+cosA)
2
+(sinA)
2
= \frac{ 1 + 2cosA + co s^{2}A + sin ^{2}A }{sinA(1 + cosA)}=
sinA(1+cosA)
1+2cosA+cos
2
A+sin
2
A
We know that ,
sin²A + cos²A = 1
Hence,
= \frac{1 + 1 + 2 cosA}{sinA( 1 + cosA)}=
sinA(1+cosA)
1+1+2cosA
\frac{2 + 2 cosA}{sinA(1+cosA)}
sinA(1+cosA)
2+2cosA
= \frac{2 ( 1 + cosA)}{sinA(1+ cosA)}=
sinA(1+cosA)
2(1+cosA)
1 + cosA gets cancelled , ( in numerator and denominator).
= 2 / sinA
= 2* 1/sinA
We know that , 1/sinA = cosec A
Hence,
= 2*1/sinA = 2* cosecA = 2cosecA = RHS
PROVED.
Similar questions