Other cultures – especially the Chinese and the Indian – had their own alchemical traditions. These included much knowledge of chemical processes and techniques. In ancient India, chemistry was called Rasayan Shastra, Rastantra, Ras Kriya or Rasvidya. It included metallurgy, medicine, manufacture of cosmetics, glass, dyes, etc. Systematic excavations at Mohenjodaro in Sindh and Harappa in Punjab prove that the story of development of chemistry in India is very old. Archaeological findings show that baked bricks were used in construction work. It shows the mass production of pottery, which can be regarded as the earliest chemical process, in which materials were mixed, moulded and subjected to heat by using fire to achieve desirable qualities. Remains of glazed pottery have been found in Mohenjodaro. Gypsum cement has been used in the construction work. It contains lime, sand and traces of CaCO3. Harappans made faience, a sort of glass which was used in ornaments. They melted and forged a variety of objects from metals, such as lead, silver, gold and copper. They improved the hardness of copper for making artefacts by using tin and arsenic. A number of glass objects were found in Maski in South India (1000–900 BCE), and Hastinapur and Taxila in North India (1000–200 BCE). Glass and glazes were coloured by addition of colouring agents like metal oxides. Copper metallurgy in India dates back to the beginning of chalcolithic cultures in the subcontinent. There are much archeological evidences to support the view that technologies for extraction of copper and iron were developed indigenously. According to Rigveda, tanning of leather and dying of cotton were practised during 1000–400 BCE. The golden gloss of the black polished ware of northen India could not be replicated and is still a chemical mystery. These wares indicate the mastery with which kiln temperatures could be controlled. Kautilya’s Arthashastra describes the production of salt from sea. A vast number of statements and material described in the ancient Vedic literature can be shown to agree with modern scientific findings. Copper utensils, iron, gold, silver ornaments and terracotta discs and painted grey pottery have been found in many archaeological sites in north India. Sushruta Samhita explains the importance of Alkalies. The Charaka Samhita mentions ancient indians who knew how to prepare sulphuric acid, nitric acid and oxides of copper, tin and zinc; the sulphates of copper, zinc and iron and the carbonates of lead and iron. Rasopanishada describes the preparation of gunpowder mixture. Tamil texts also describe the preparation of fireworks using sulphur, charcoal, saltpetre (i.e., potassium nitrate), mercury, camphor, etc. Nagarjuna was a great Indian scientist. He was a reputed chemist, an alchemist and a metallurgist. His work Rasratnakar deals with the formulation of mercury compounds. He has also discussed methods for the extraction of metals, like gold, silver, tin and copper. A book, Rsarnavam, appeared around 800 CE. It discusses the uses of various furnaces, ovens and crucibles for different purposes. It describes methods by which metals could be identified by flame colour. Chakrapani discovered mercury sulphide. The credit for inventing soap also goes to him. He used mustard oil and some alkalies as ingredients for making soap. Indians began making soaps in the 18th century CE. Oil of Eranda and seeds of Mahua plant and calcium carbonate were used for making soap. The paintings found on the walls of Ajanta and Ellora, which look fresh even after ages, testify to a high level of science achieved in ancient India. Varähmihir’s Brihat Samhita is a sort of encyclopaedia, which was composed in the sixth century CE. It informs about the preparation of glutinous material to be applied on walls and roofs of houses and temples. It was prepared entirely from extracts of various plants, fruits, seeds and barks, which were concentrated by boiling, and then, treated with various resins. It will be interesting to test such materials scientifically and assess them for use.
Answers
Answered by
2
Answer:
Thank you for the info it is really helpful
Similar questions