Math, asked by sb9669236, 1 month ago

Out of 1900 km, Vishal travelled some distance by bus and some by aeroplane. Bus travels with average speed 60 km/hr and the average speed of aeroplane is 700 km/hr. It takes 5 hours to complete the journey. Find the distance, Vishal travelled by bus.
please full explan​

Answers

Answered by prasannshenoy121
1

Answer:

We know that, Speed=

Time

Distance

⇒Time=

Speed

Distance

Let Distance Travelled by Bus be x

so that Distance Travelled by Aeroplane 1900−x

Now, Total time is 5 Hours

5=

60

x

+

700

1900−x

⇒5=

2100

35x+3(1900−x)

⇒10500=32x+5700⇒4800=32x⇒x=150 KM

Answered by MathHacker001
9

Question :-

Out of 1900 km, Vishal travelled some distance by bus and some by aeroplane. Bus travels with average speed 60 km/hr and the average speed of aeroplane is 700 km/hr. It takes 5 hours to complete the journey. Find the distance, Vishal travelled by bus.

please full explain.

Solution :-

We know Speed =  \rm{\frac{Distance}{Time}} \\

  • Average speed of bus = 60km/hr.
  • Let time taken in bus be x hours.
  • Average speed of plane = 700km/hr.
  • Total distance covered = 1900km.

Now,

\sf:\longmapsto{60x + 700y = 1900}

Divide the equation by 10

\sf:\longmapsto{6x + 70y = 190}

Divide the equation 2

\sf:\longmapsto{3x + 35y = 95 \:  \:  \:  \:  \:  \: ...(1)}

It takes 5 hours to complete the journey.

It takes 5 hours to complete the journey.So,

\sf:\longmapsto{x + y = 5 \:  \:  \:  \:  \:  \:  ...(2)}

Multiplying equation (2) by 3

\sf:\longmapsto{3x + 3y = 15 \:  \:  \:  \:  \:  \: ...(3)}

Subtracting equation (3) from (1)

We get,

\sf:\longmapsto{3x + 35y - (3x + 3y) = 95 - 15} \\  \\ \sf:\longmapsto{3x - 3x + 35y - 3y = 80} \:  \:  \:  \:  \:  \:  \:  \:  \:  \:  \:  \:  \:  \:  \\  \\ \sf:\longmapsto{32y = 80} \:  \:  \:  \:  \:  \:  \:  \:  \:  \:  \:  \:  \:  \:  \:  \:  \:  \:  \:  \:  \:  \:  \:  \:  \:  \:  \:  \:  \:  \:  \:  \:  \:  \:  \:  \:  \:  \:  \:  \:  \:  \:  \:  \\  \\ \bf:\longmapsto \red{y = 2.5 \: } \:  \:  \:  \:  \:  \:  \:  \:  \:  \:  \:  \:  \:  \:  \:  \:  \:  \:  \:  \:  \:  \:  \:  \:  \:  \:  \:  \:  \:  \:  \:  \:  \:  \:  \:  \:  \:  \:  \:  \:  \:  \:  \:  \:

Substitute y = 2.5 in equation (2)

\sf:\longmapsto{x + 2.5 = 5} \\  \\ \sf:\longmapsto{x = 5 - 2.5} \\  \\ \bf:\longmapsto \red{x = 2.5} \:  \:  \:  \:  \:  \:

Vishal travel bus for 2.5hr.

Distance travelled by vishal by bus =

\rm:\longmapsto{speed \times time} \\  \\ \sf:\longmapsto{60 \times 2.5} \:  \:  \:  \:  \:  \:  \:  \:  \\  \\ \bf:\longmapsto \red{150 \:  \:  \:  \:  \:  \:  \:  \:  \:  \:  \:  \:  \:  \:  \: }

 \small\rm{Distance \:  travelled  \: by \:  vishal  \: by  \: bus  \: is  \: \bold{150km.}}

▬▬▬▬▬▬▬▬▬▬▬▬▬▬▬▬▬▬▬▬▬▬

Similar questions