out of 300 s students donot study both of the subjecttudent in a class, 60% students study physics, 35% students study chemistry and 20% students do not study both of the subject. then how many students study both subjects
SET
Answers
Answer:
Let M, P and C denote the students studying Mathematics, Physics and Chemistry
And U represents total students
So, n(U)=200,
n(M)=120,n(P)=90
n(C)=70,n(M∩P)=40,n(P∩C)=30
n(M∩C)=50,n(M∪P∪C)
′
=20
∴n(M∪P∪C)
′
=n(U)−n(M∪P∪C)
⇒20=200−n(M∪P∪C)
⇒n(M∪P∪C)=180
⇒n(M∪P∪C)=n(M)+n(P)+n(C)
−n(M∩P)−n(P∩C)−n(C∩M)+n(C∩M∩P)
∴180=120+90+70−40−30−50+n(C∩M∩P)
⇒180=280−120+n(C∩M∩P)
⇒n(P∩C∩M)=300−280=20
Hence, the number of students studying all three subjects is 20.
Step-by-step explanation:
Step-by-step explanation:Let M, P and C denote the students studying Mathematics, Physics and Chemistry
Step-by-step explanation:Let M, P and C denote the students studying Mathematics, Physics and ChemistryAnd U represents total students
Step-by-step explanation:Let M, P and C denote the students studying Mathematics, Physics and ChemistryAnd U represents total studentsSo, n(U)=200,
Step-by-step explanation:Let M, P and C denote the students studying Mathematics, Physics and ChemistryAnd U represents total studentsSo, n(U)=200,n(M)=120,n(P)=90
Step-by-step explanation:Let M, P and C denote the students studying Mathematics, Physics and ChemistryAnd U represents total studentsSo, n(U)=200,n(M)=120,n(P)=90n(C)=70,n(M∩P)=40,n(P∩C)=30
Step-by-step explanation:Let M, P and C denote the students studying Mathematics, Physics and ChemistryAnd U represents total studentsSo, n(U)=200,n(M)=120,n(P)=90n(C)=70,n(M∩P)=40,n(P∩C)=30n(M∩C)=50,n(M∪P∪C)
Step-by-step explanation:Let M, P and C denote the students studying Mathematics, Physics and ChemistryAnd U represents total studentsSo, n(U)=200,n(M)=120,n(P)=90n(C)=70,n(M∩P)=40,n(P∩C)=30n(M∩C)=50,n(M∪P∪C) ′
Step-by-step explanation:Let M, P and C denote the students studying Mathematics, Physics and ChemistryAnd U represents total studentsSo, n(U)=200,n(M)=120,n(P)=90n(C)=70,n(M∩P)=40,n(P∩C)=30n(M∩C)=50,n(M∪P∪C) ′ =20
Step-by-step explanation:Let M, P and C denote the students studying Mathematics, Physics and ChemistryAnd U represents total studentsSo, n(U)=200,n(M)=120,n(P)=90n(C)=70,n(M∩P)=40,n(P∩C)=30n(M∩C)=50,n(M∪P∪C) ′ =20∴n(M∪P∪C)
Step-by-step explanation:Let M, P and C denote the students studying Mathematics, Physics and ChemistryAnd U represents total studentsSo, n(U)=200,n(M)=120,n(P)=90n(C)=70,n(M∩P)=40,n(P∩C)=30n(M∩C)=50,n(M∪P∪C) ′ =20∴n(M∪P∪C) ′
Step-by-step explanation:Let M, P and C denote the students studying Mathematics, Physics and ChemistryAnd U represents total studentsSo, n(U)=200,n(M)=120,n(P)=90n(C)=70,n(M∩P)=40,n(P∩C)=30n(M∩C)=50,n(M∪P∪C) ′ =20∴n(M∪P∪C) ′ =n(U)−n(M∪P∪C)
Step-by-step explanation:Let M, P and C denote the students studying Mathematics, Physics and ChemistryAnd U represents total studentsSo, n(U)=200,n(M)=120,n(P)=90n(C)=70,n(M∩P)=40,n(P∩C)=30n(M∩C)=50,n(M∪P∪C) ′ =20∴n(M∪P∪C) ′ =n(U)−n(M∪P∪C)⇒20=200−n(M∪P∪C)
Step-by-step explanation:Let M, P and C denote the students studying Mathematics, Physics and ChemistryAnd U represents total studentsSo, n(U)=200,n(M)=120,n(P)=90n(C)=70,n(M∩P)=40,n(P∩C)=30n(M∩C)=50,n(M∪P∪C) ′ =20∴n(M∪P∪C) ′ =n(U)−n(M∪P∪C)⇒20=200−n(M∪P∪C)⇒n(M∪P∪C)=180
Step-by-step explanation:Let M, P and C denote the students studying Mathematics, Physics and ChemistryAnd U represents total studentsSo, n(U)=200,n(M)=120,n(P)=90n(C)=70,n(M∩P)=40,n(P∩C)=30n(M∩C)=50,n(M∪P∪C) ′ =20∴n(M∪P∪C) ′ =n(U)−n(M∪P∪C)⇒20=200−n(M∪P∪C)⇒n(M∪P∪C)=180⇒n(M∪P∪C)=n(M)+n(P)+n(C)
Step-by-step explanation:Let M, P and C denote the students studying Mathematics, Physics and ChemistryAnd U represents total studentsSo, n(U)=200,n(M)=120,n(P)=90n(C)=70,n(M∩P)=40,n(P∩C)=30n(M∩C)=50,n(M∪P∪C) ′ =20∴n(M∪P∪C) ′ =n(U)−n(M∪P∪C)⇒20=200−n(M∪P∪C)⇒n(M∪P∪C)=180⇒n(M∪P∪C)=n(M)+n(P)+n(C)−n(M∩P)−n(P∩C)−n(C∩M)+n(C∩M∩P)
Step-by-step explanation:Let M, P and C denote the students studying Mathematics, Physics and ChemistryAnd U represents total studentsSo, n(U)=200,n(M)=120,n(P)=90n(C)=70,n(M∩P)=40,n(P∩C)=30n(M∩C)=50,n(M∪P∪C) ′ =20∴n(M∪P∪C) ′ =n(U)−n(M∪P∪C)⇒20=200−n(M∪P∪C)⇒n(M∪P∪C)=180⇒n(M∪P∪C)=n(M)+n(P)+n(C)−n(M∩P)−n(P∩C)−n(C∩M)+n(C∩M∩P)∴180=120+90+70−40−30−50+n(C∩M∩P)
Step-by-step explanation:Let M, P and C denote the students studying Mathematics, Physics and ChemistryAnd U represents total studentsSo, n(U)=200,n(M)=120,n(P)=90n(C)=70,n(M∩P)=40,n(P∩C)=30n(M∩C)=50,n(M∪P∪C) ′ =20∴n(M∪P∪C) ′ =n(U)−n(M∪P∪C)⇒20=200−n(M∪P∪C)⇒n(M∪P∪C)=180⇒n(M∪P∪C)=n(M)+n(P)+n(C)−n(M∩P)−n(P∩C)−n(C∩M)+n(C∩M∩P)∴180=120+90+70−40−30−50+n(C∩M∩P)⇒180=280−120+n(C∩M∩P)
Step-by-step explanation:Let M, P and C denote the students studying Mathematics, Physics and ChemistryAnd U represents total studentsSo, n(U)=200,n(M)=120,n(P)=90n(C)=70,n(M∩P)=40,n(P∩C)=30n(M∩C)=50,n(M∪P∪C) ′ =20∴n(M∪P∪C) ′ =n(U)−n(M∪P∪C)⇒20=200−n(M∪P∪C)⇒n(M∪P∪C)=180⇒n(M∪P∪C)=n(M)+n(P)+n(C)−n(M∩P)−n(P∩C)−n(C∩M)+n(C∩M∩P)∴180=120+90+70−40−30−50+n(C∩M∩P)⇒180=280−120+n(C∩M∩P)⇒n(P∩C∩M)=300−280=20
Step-by-step explanation:Let M, P and C denote the students studying Mathematics, Physics and ChemistryAnd U represents total studentsSo, n(U)=200,n(M)=120,n(P)=90n(C)=70,n(M∩P)=40,n(P∩C)=30n(M∩C)=50,n(M∪P∪C) ′ =20∴n(M∪P∪C) ′ =n(U)−n(M∪P∪C)⇒20=200−n(M∪P∪C)⇒n(M∪P∪C)=180⇒n(M∪P∪C)=n(M)+n(P)+n(C)−n(M∩P)−n(P∩C)−n(C∩M)+n(C∩M∩P)∴180=120+90+70−40−30−50+n(C∩M∩P)⇒180=280−120+n(C∩M∩P)⇒n(P∩C∩M)=300−280=20Hence, the number of students studying all three subjects is 20.