Math, asked by jawad66, 4 months ago

out of 7 consonants and 4 vowels,how many words of 3 consonants and 2 vowels can be formed?

Answers

Answered by PharohX
7

GIVEN :-

  • No. of consonants = 7
  • No. of vowels = 4

TO FIND :-

  • No. of consonants and vowels formed respectively 3 and 2

SOLUTION :-

  • We should choose 3 consonants and 2 vowels from 7 consonant and 4 vowels

Required Combination-

 \sf 7C_{ 3} \:  \times 4C_{ 2}

 =  \frac{7!}{3!(7 - 3)!} \times  \frac{4!}{2!(4 - 2)!}   \\

 \sf \: Note -

 \boxed{ \green{ \sf nC_{ r} =  \frac{n!}{r!(n -r) !} } }\\

 =  \frac{7!}{3!(4)!} \times  \frac{4!}{2!(2)!}   \\

 =  \frac{7 \times 6 \times 5 \times  \cancel{4!}}{3!( \cancel{4)!}} \times  \frac{4 \times 3 \times  \cancel{2!}}{2!( \cancel{2)!}}   \\

 =  \frac{7 \times 6 \times 5}{3 \times 2 \times 1} \times  \frac{4 \times 3}{2 \times 1}   \\

 =  35 \times 6

 \sf = 210

  • Total 210 words be formed.

Similar questions