Computer Science, asked by garvisingh888, 10 months ago

Owning up and being responsible for what you do and are able to give a satisfactory reason for it, is known as- *

Accountability

Dependability

Both the above

None of the above

Answers

Answered by JaismeenArman
0

Answer:

_______________don't know

Answered by shree1535
0

Explanation:

TO PROVE:

\sf cot ^{ - 1} \left(\dfrac{ \sqrt{1 + \sin \: x } + \sqrt{1 - \sin \: x } }{ \sqrt{1 + \sin \: x} - \sqrt{1 - \sin \: x } } \right )= \dfrac{x}{2}cot

−1

(

1+sinx

1−sinx

1+sinx

+

1−sinx

)=

2

x

PROOF:

\leadsto\sf Take \ \sqrt{1 + sin\ x}⇝Take

1+sin x

\boxed{ \large{ \bold{ \gray{sin \ 2x = 2 \ sin \ x \ cos \ x}}}}

sin 2x=2 sin x cos x

\leadsto \sf sin \ x = 2 \ sin \ \left(\dfrac{x}{2}\right) \ cos \ \left( \dfrac{x}{2} \right)⇝sin x=2 sin (

2

x

) cos (

2

x

)

Add one on both sides.

\leadsto\sf 1 + sin \ x = 1 + 2 \ sin \ \left(\dfrac{x}{2}\right) \ cos \ \left( \dfrac{x}{2} \right)⇝1+sin x=1+2 sin (

2

x

) cos (

2

x

)

\boxed{ \large{ \bold{ \gray{sin ^{2} \ \frac{x}{2} + {cos}^{2} \ \frac{x}{2} =1}}}}

sin

2

2

x

+cos

2

2

x

=1

1 + 2 sin(x/2) cos (x/2) = sin² (x/2) + cos² (x/2) + 2 sin(x/2) cos (x/2)

\boxed{ \large{ \bold{ \gray{ A^2+ 2AB + B^2 = (A+B)^2}}}}

A

2

+2AB+B

2

=(A+B)

2

1 - sin x = [sin (x/2) - cos (x/2)]²

\leadsto\sf 1 + sin \ x = \left( sin \ \left(\dfrac{x}{2}\right) + \ cos \ \left( \dfrac{x}{2} \right) \right) ^{2}⇝1+sin x=(sin (

2

x

)+ cos (

2

x

))

2

\leadsto\sf \sqrt{1 + sin \ x} = sin \ \left(\dfrac{x}{2}\right) + \ cos \ \left( \dfrac{x}{2} \right)⇝

1+sin x

=sin (

2

x

)+ cos (

2

x

)

\sf Take \ \sqrt{1 - sin\ x}Take

1−sin x

\boxed{ \large{ \bold{ \gray{sin \ 2x = 2 \ sin \ x \ cos \ x}}}}

sin 2x=2 sin x cos x

\leadsto \sf - sin \ x = - 2 \ sin \ \left(\dfrac{x}{2}\right) \ cos \ \left( \dfrac{x}{2} \right)⇝−sin x=−2 sin (

2

x

) cos (

2

x

)

Add one on both sides

\leadsto\sf 1 - sin \ x = 1 - 2 \ sin \ \left(\dfrac{x}{2}\right) \ cos \ \left( \dfrac{x}{2} \right)⇝1−sin x=1−2 sin (

2

x

) cos (

2

x

)

\boxed{ \large{ \bold{ \gray{sin ^{2} \ \frac{x}{2} + {cos}^{2} \ \frac{x}{2} =1}}}}

sin

2

2

x

+cos

2

2

x

=1

1 - 2 sin(x/2) cos (x/2) = sin² (x/2) + cos² (x/2) - 2 sin(x/2) cos (x/2)

\boxed{ \large{ \bold{ \gray{ A^2 - 2AB + B^2 = (A - B)^2}}}}

A

2

−2AB+B

2

=(A−B)

2

1 - sin x = [sin (x/2) - cos (x/2)]²

This can also be written as:

1 - sin x = [cos (x/2) - sin (x/2)]²

\leadsto\sf \sqrt{1 - sin \ x }= \ cos \ \left( \dfrac{x}{2} \right) - sin \ \left(\dfrac{x}{2}\right)⇝

1−sin x

= cos (

2

x

)−sin (

2

x

)

\leadsto \sf Take \ \sqrt{1 + sin\ x} + \sqrt{1 - sin\ x}⇝Take

1+sin x

+

1−sin x

sin (x/2) + cos (x/2) + cos (x/2) - sin (x/2)

\leadsto\sf \sqrt{1 + sin\ x} + \sqrt{1 - sin\ x} = 2 cos \ \left(\dfrac{x}{2} \right)⇝

1+sin x

+

1−sin x

=2cos (

2

x

)

\sf Take \ \sqrt{1 + sin\ x} - \sqrt{1 - sin\ x}Take

1+sin x

1−sin x

sin (x/2) + cos (x/2) - cos (x/2) + sin (x/2)

\leadsto\sf \sqrt{1 + sin\ x} - \sqrt{1 - sin\ x} = 2 sin \ \left(\dfrac{x}{2} \right)⇝

1+sin x

1−sin x

=2sin (

2

x

)

Substitute the respective values.

\leadsto\sf \cot ^{ - 1} \left( \dfrac{2cos \ \left(\dfrac{x}{2} \right )}{ 2sin \ \left(\dfrac{x}{2}\right ) }\right )⇝cot

−1

2sin (

2

x

)

2cos (

2

x

)

\leadsto\sf \cancel{cot}^{ - 1} \left( \cancel{cot} \ \left( \dfrac{x}{2} \right)\right)⇝

cot

−1

(

cot

(

2

x

Similar questions